Publications by authors named "George Korza"

Article Synopsis
  • The study explores how ohmic heating (OH) is more effective in killing bacterial spores than conventional heating (CH) and investigates the underlying mechanisms using genetically modified Bacillus subtilis strains.
  • The removal of small acid-soluble proteins (SASP) showed that these proteins interact with the electric field, affecting spore inactivation, while other core components may also play a role.
  • Findings suggest that the fluidity of the spore membrane and the interaction of core proteins with the electric field are crucial factors contributing to the enhanced effectiveness of electric field-heat combinations for spore inactivation.
View Article and Find Full Text PDF

and spores cause food spoilage and disease because of spores' dormancy and resistance to microbicides. However, when spores "come back to life" in germination, their resistance properties are lost. Thus, understanding the mechanisms of spore germination could facilitate the development of "germinate to eradicate" strategies.

View Article and Find Full Text PDF

2Duf, named after the presence of a transmembrane (TM) Duf421 domain and a small Duf1657 domain in its sequence, is likely located in the inner membrane (IM) of spores in some species carrying a transposon with an operon termed . These spores are known for their extreme resistance to wet heat, and 2Duf is believed to be the primary contributor to this trait. In this study, we found that the absence of YetF or YdfS, both Duf421 domain-containing proteins and found only in wild-type (wt) spores with YetF more abundant, leads to decreased resistance to wet heat and agents that can damage spore core components.

View Article and Find Full Text PDF

Coenzyme A (CoA) is an important cellular metabolite that is critical for metabolic processes and the regulation of gene expression. Recent discovery of the antioxidant function of CoA has highlighted its protective role that leads to the formation of a mixed disulfide bond with protein cysteines, which is termed protein CoAlation. To date, more than 2000 CoAlated bacterial and mammalian proteins have been identified in cellular responses to oxidative stress, with the majority being involved in metabolic pathways (60%).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated how the presence of the 2Duf protein in Bacillus subtilis spores affects their resistance to wet heat and hydrogen peroxide (H2O2) and aimed to understand the properties of the spore's inner membrane (IM).
  • Findings showed that spores with the 2Duf protein were less susceptible to killing by wet heat and H2O2, exhibiting slower viability loss and requiring higher heat activation for germination, indicating enhanced resistance compared to wild-type spores.
  • It is suggested that the killing mechanism of wet heat and H2O2 may involve damage to IM enzymes associated with oxidative phosphorylation, while the composition of IM remains similar regardless of the presence of 2Duf
View Article and Find Full Text PDF

The development of Bacillus spore cores involves the accumulation of 3-phosphoglycerate (3PGA) during sporulation, following core acidification to ~6.4, and before decreases in core water content occur due to Ca-dipicolinc acid (CaDPA) uptake. This core acidification inhibits phosphoglycerate mutase (PGM) at pH 6.

View Article and Find Full Text PDF

Increasingly, national space agencies are expanding their goals to include Mars exploration with sample return. To better protect Earth and its biosphere from potential extraterrestrial sources of contamination, as set forth in the Outer Space Treaty of 1967, international efforts to develop planetary protection measures strive to understand the danger of cross-contamination processes in Mars sample return missions. We aim to better understand the impact of the martian surface on microbial dormancy and survivability.

View Article and Find Full Text PDF

Aims: A protein termed 2Duf greatly increases wet heat resistance of Bacillus subtilis spores. The current work examines the effects of 2Duf on spore resistance to other sporicides, including chemicals that act on or must cross spores' inner membrane (IM), where 2Duf is likely present. The overall aim was to gain a deeper understanding of how 2Duf affects spore resistance, and of spore resistance itself.

View Article and Find Full Text PDF

Spores of firmicute species contain 100s of mRNAs, whose major function in Bacillus subtilis is to provide ribonucleotides for new RNA synthesis when spores germinate. To determine if this is a general phenomenon, RNA was isolated from spores of multiple firmicute species and relative mRNA levels determined by transcriptome sequencing (RNA-seq). Determination of RNA levels in single spores allowed calculation of RNA nucleotides/spore, and assuming mRNA is 3% of spore RNA indicated that only ∼6% of spore mRNAs were present at >1/spore.

View Article and Find Full Text PDF

Spores of Gram-positive bacteria contain 10s-1000s of different mRNAs. However, Bacillus subtilis spores contain only ∼ 50 mRNAs at > 1 molecule/spore, almost all transcribed only in the developing spore and encoding spore proteins. However, some spore mRNAs could be stabilized to ensure they are intact in dormant spores, perhaps to direct synthesis of proteins essential for spores' conversion to a growing cell in germinated spore outgrowth.

View Article and Find Full Text PDF

There is a growing need for a highly stable system to allow the production of biologics for diagnoses and therapeutic interventions on demand that could be used in extreme environments. Among the variety of biologics, nanobodies (Nbs) derived from single-chain variable antibody fragments from camelids have attracted great attention in recent years due to their small size and great stability with translational potentials in whole-body imaging and the development of new drugs. Intracellular expression using the bacterium has been the predominant system to produce Nbs, and this requires lengthy steps for releasing intracellular proteins for purification as well as removal of endotoxins.

View Article and Find Full Text PDF

This study examined the microbicidal activity of 222-nm UV radiation (UV), which is potentially a safer alternative to the 254-nm UV radiation (UV) that is often used for surface decontamination. Spores and/or growing and stationary-phase cells of , , , , and and a herpesvirus were all killed or inactivated by UV and at lower fluences than with UV spores and cells lacking the major DNA repair protein RecA were more sensitive to UV, as were spores lacking their DNA-protective proteins, the α/β-type small, acid-soluble spore proteins. The spore cores' large amount of Ca-dipicolinic acid (∼25% of the core dry weight) also protected and spores against UV, while spores' proteinaceous coat may have given some slight protection against UV Survivors among spores treated with UV acquired a large number of mutations, and this radiation generated known mutagenic photoproducts in spore and cell DNA, primarily cyclobutane-type pyrimidine dimers in growing cells and an α-thyminyl-thymine adduct termed the spore photoproduct (SP) in spores.

View Article and Find Full Text PDF

Two rare earth ions, Tb and Dy, were incorporated into spores of species in ≤5 min at neutral pH to 100 to 200 nmol per mg of dry spores, which is equivalent to 2 to 3% of the spore dry weight. The uptake of these ions had, at most, minimal effects on spore wet heat resistance or germination, and the ions were all released upon germination, probably by complex formation with the huge depot of dipicolinic acid (DPA) released when spores germinate. Adsorbed Tb/Dy were also released by exogenous DPA within a few minutes and faster than in spore germination.

View Article and Find Full Text PDF

spores incubated on plates for 2 to 98 days at 37°C had identical Ca-dipicolinic acid contents, exhibited identical viability on rich- or poor-medium plates, germinated identically in liquid with all germinants tested, identically returned to vegetative growth in rich or minimal medium, and exhibited essentially identical resistance to dry heat and similar resistance to UV radiation. However, the oldest spores had a lower core water content and significantly higher wet heat and NaOCl resistance. In addition, 47- and 98-day spores had lost >98% of intact 16S and 23S rRNA and 97 to 99% of almost all mRNAs, although minimal amounts of mononucleotides were generated in 91 days.

View Article and Find Full Text PDF

Large-scale shotgun sequencing (RNA-seq) analysis of mRNAs in dormant spores prepared on plates or in liquid generally found the same ∼46 abundant mRNA species, with >250 mRNAs detected at much lower abundances. Knowledge of the amount of phosphate in a single spore allowed calculation of the amount of mRNA in an individual spore as ∼10 nucleotides (nt). Given the levels of abundant spore mRNAs compared to those of other mRNAs, it was calculated that the great majority of low-abundance mRNAs are present in only small fractions of spores in populations.

View Article and Find Full Text PDF

Dormant spores of Bacillus species lack ATP and NADH and contain notable levels of only a few other common low mol wt energy reserves, including 3-phosphoglyceric acid (3PGA), and glutamic acid. Recently, Bacillus subtilis spores were reported to contain ~ 30 μmol of L-malate/g dry wt, which also could serve as an energy reserve. In present work, L-malate levels were determined in the core of dormant spores of B.

View Article and Find Full Text PDF

CGG repeats in the 5'UTR of Fragile X Mental Retardation 1 (FMR1) RNA mediate RNA localization and translation in granules. Large expansions of CGG repeats (> 200 repeats) in FMR1, referred to as full mutations, are associated with fragile X syndrome (FXS). Smaller expansions (55-200 repeats), referred to as premutations, are associated with fragile X tremor ataxia syndrome (FXTAS) and fragile X premature ovarian insufficiency (FXPOI).

View Article and Find Full Text PDF

Translesion synthesis (TLS) is a mutagenic branch of cellular DNA damage tolerance that enables bypass replication over DNA lesions carried out by specialized low-fidelity DNA polymerases. The replicative bypass of most types of DNA damage is performed in a two-step process of Rev1/Polζ-dependent TLS. In the first step, a Y-family TLS enzyme, typically Polη, Polι, or Polκ, inserts a nucleotide across a DNA lesion.

View Article and Find Full Text PDF

The protease CspB and the cortex-lytic enzyme SleC are essential for peptoglycan cortex hydrolysis during germination of spores of the Clostridium perfringens food poisoning isolate SM101. In this study, Western blot analyses were used to demonstrate that CspB and SleC are present exclusively in the C. perfringens SM101 spore coat layer fraction and absent in the lysate from decoated spores and from the purified inner spore membrane.

View Article and Find Full Text PDF

This work was undertaken to obtain information on levels of metabolism in dormant spores of Bacillus species incubated for weeks at physiological temperatures. Spores of Bacillus megaterium and Bacillus subtilis strains were harvested shortly after release from sporangia and incubated under various conditions, and dormant spore metabolism was monitored by (31)P nuclear magnetic resonance (NMR) analysis of molecules including 3-phosphoglyceric acid (3PGA) and ribonucleotides. Incubation for up to 30 days at 4, 37, or 50°C in water, at 37 or 50°C in buffer to raise the spore core pH from ∼6.

View Article and Find Full Text PDF

The Bacillus subtilis spoVAEa and spoVAF genes are expressed in developing spores as members of the spoVA operon, which encodes proteins essential for the uptake and release of dipicolinic acid (DPA) during spore formation and germination. SpoVAF is likely an integral inner spore membrane protein and exhibits sequence identity to A subunits of the spore's nutrient germinant receptors (GRs), while SpoVAEa is a soluble protein with no obvious signals to allow its passage across a membrane. However, like SpoVAD, SpoVAEa is present on the outer surface of the spore's inner membrane, as SpoVAEa was accessible to an external biotinylation agent in spores and SpoVAEa disappeared in parallel with SpoVAD during proteinase K treatment of germinated spores.

View Article and Find Full Text PDF

The Gram-positive, anaerobic, spore-forming bacterium Clostridium perfringens causes a variety of diseases in both humans and animals, and spore germination is thought to be the first stage of C. perfringens infection. Previous studies have indicated that the germinant receptor (GR) proteins encoded by the bicistronic gerKA-gerKC operon as well as the proteins encoded by the gerKB and gerAA genes are required for normal germination of C.

View Article and Find Full Text PDF

In neurons, specific RNAs are assembled into granules, which are translated in dendrites, however the functional consequences of granule assembly are not known. Tumor overexpressed gene (TOG) is a granule-associated protein containing multiple binding sites for heterogeneous nuclear ribonucleoprotein (hnRNP) A2, another granule component that recognizes cis-acting sequences called hnRNP A2 response elements (A2REs) present in several granule RNAs. Translation in granules is sporadic, which is believed to reflect monosomal translation, with occasional bursts, which are believed to reflect polysomal translation.

View Article and Find Full Text PDF

A number of operons encoding the nutrient germinant receptors (GRs) in dormant spores of Bacillus megaterium and Bacillus subtilis species have small open reading frames (ORFs) of unknown function within or immediately adjacent to the operons. Inactivation of the genes in these ORFs, encoding proteins now termed D proteins, either significantly increased or decreased spore germination via the associated GR but had no effects on germination via non-GR-dependent germinants. These effects on GR-dependent germination were complemented by ectopic expression of the appropriate D gene (gene encoding D protein).

View Article and Find Full Text PDF