Publications by authors named "George Keshelava"

To investigate the local effects of angiotensin II on the heart, we created a mouse model with 100-fold normal cardiac angiotensin-converting enzyme (ACE), but no ACE expression in kidney or vascular endothelium. This was achieved by placing the endogenous ACE gene under the control of the alpha-myosin heavy chain promoter using targeted homologous recombination. These mice, called ACE 8/8, have cardiac angiotensin II levels that are 4.

View Article and Find Full Text PDF

The resin angiotensin system (RAS) plays an essential role in blood pressure regulation and electrolyte homeostasis. The effecter peptide of the RAS, angiotensin II, is produced by angiotensin converting enzyme (ACE) in multiple tissues. Genetic deletion of ACE in mice resulted a phenotype of low blood pressure, anemia and kidney defects.

View Article and Find Full Text PDF

Despite several decades of research into the renin-angiotensin system, new aspects of this endocrine system are elucidated every few years, expanding its role not only in hypertension but also in diabetes, oncology, and cardiology. In this review, we describe newly recognized physiologic actions of the angiotensin-converting enzyme (ACE). These include the role of local versus systemic ACE in maintaining blood pressure, the physiology of bradykinin accumulation during ACE inactivation, and the role of alternate "non-angiotensin" substrates and potential non-enzymatic properties of ACE.

View Article and Find Full Text PDF

Angiotensin-converting enzyme (ACE) produces the vasoconstrictor angiotensin II. The ACE protein is composed of two homologous domains, each binding zinc and each independently catalytic. To assess the physiologic significance of the two ACE catalytic domains, we used gene targeting in mice to introduce two point mutations (H395K and H399K) that selectively inactivated the ACE N-terminal catalytic site.

View Article and Find Full Text PDF