Publications by authors named "George Kemble"

Background: Denifanstat, an oral fatty acid synthase (FASN) inhibitor, blocks de-novo lipogenesis, a key pathway driving progressive lipotoxicity, inflammation, and fibrosis in metabolic dysfunction-associated steatohepatitis (MASH). This study aimed to examine the safety and efficacy of denifanstat for improving liver histology in individuals with MASH and moderate to advanced fibrosis.

Methods: This multicentre, double-blind, randomised, placebo-controlled, phase 2b trial was conducted at 100 clinical sites in the USA, Canada, and Poland.

View Article and Find Full Text PDF

Background: One of the key limitations of targeted cancer therapies is the rapid onset of therapy resistance. Taking BRAF-mutant melanoma as paradigm, we previously identified the lipogenic regulator SREBP-1 as a central mediator of resistance to MAPK-targeted therapy. Reasoning that lipogenesis-mediated alterations in membrane lipid poly-unsaturation lie at the basis of therapy resistance, we targeted fatty acid synthase (FASN) as key player in this pathway to evoke an exquisite vulnerability to clinical inducers of reactive oxygen species (ROS), thereby rationalizing a novel clinically actionable combination therapy to overcome therapy resistance.

View Article and Find Full Text PDF

Fatty acid synthase (FASN) is an attractive therapeutic target in non-alcoholic steatohepatitis (NASH) because it drives de novo lipogenesis and mediates pro-inflammatory and fibrogenic signaling. We therefore tested pharmacological inhibition of FASN in human cell culture and in three diet induced mouse models of NASH. Three related FASN inhibitors were used; TVB-3664, TVB-3166 and clinical stage TVB-2640 (denifanstat).

View Article and Find Full Text PDF

Mutant KRAS (KM), the most common oncogene in lung cancer (LC), regulates fatty acid (FA) metabolism. However, the role of FA in LC tumorigenesis is still not sufficiently characterized. Here, we show that KMLC has a specific lipid profile, with high triacylglycerides and phosphatidylcholines (PC).

View Article and Find Full Text PDF

Inhibitors of the lipogenic enzyme fatty acid synthase (FASN) have attracted much attention in the last decade as potential targeted cancer therapies. However, little is known about the molecular determinants of cancer cell sensitivity to FASN inhibitors (FASNis), which is a major roadblock to their therapeutic application. Here, we find that pharmacological starvation of endogenously produced FAs is a previously unrecognized metabolic stress that heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors.

View Article and Find Full Text PDF

Background & Aims: Increased de novo lipogenesis creates excess intrahepatic fat and lipotoxins, propagating liver damage in nonalcoholic steatohepatitis. TVB-2640, a fatty acid synthase inhibitor, was designed to reduce excess liver fat and directly inhibit inflammatory and fibrogenic pathways. We assessed the safety and efficacy of TVB-2640 in patients with nonalcoholic steatohepatitis in the United States.

View Article and Find Full Text PDF
Article Synopsis
  • A first-in-human dose-escalation study was performed to assess the safety and effectiveness of the oral FASN inhibitor TVB-2640, both alone and combined with taxane chemotherapy, in patients with advanced metastatic solid tumors.
  • The study, conducted at 11 sites in the US and UK, involved 136 patients, with the maximum tolerated dose established at 100 mg/m, and key side effects included skin and ocular issues, as well as common treatment-emergent adverse events like alopecia and fatigue.
  • The results indicated a disease control rate of 42% for TVB-2640 monotherapy, with some serious adverse events, including one drug-related fatality, prompting ongoing safety assessments and targeting of cancer metabolism issues
View Article and Find Full Text PDF

Background And Aims: Elevated hepatic de novo lipogenesis (DNL) is a key distinguishing characteristic of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis. In rodent models of NAFLD, treatment with a surrogate of TVB-2640, a pharmacological fatty acid synthase inhibitor, has been shown to reduce hepatic fat and other biomarkers of DNL. The purpose of this phase I clinical study was to test the effect of the TVB-2640 in obese men with certain metabolic abnormalities that put them at risk for NAFLD.

View Article and Find Full Text PDF

Fatty Acid Synthase (FASN), a key enzyme of lipogenesis, is upregulated in many cancers including colorectal cancer (CRC); increased FASN expression is associated with poor prognosis. Potent FASN inhibitors (TVBs) developed by 3-V Biosciences demonstrate anti-tumor activity and and a favorable tolerability profile in a Phase I clinical trial. However, CRC characteristics associated with responsiveness to FASN inhibition are not fully understood.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) is an important opportunistic pathogen in immunocompromised patients and a major cause of congenital birth defects when acquired in utero. In the 1990s, four chimeric viruses were constructed by replacing genome segments of the high passage Towne strain with segments of the low passage Toledo strain, with the goal of obtaining live attenuated vaccine candidates that remained safe but were more immunogenic than the overly attenuated Towne vaccine. The chimeras were found to be safe when administered to HCMV-seronegative human volunteers, but to differ significantly in their ability to induce seroconversion.

View Article and Find Full Text PDF

Decades of preclinical and natural history studies have highlighted the potential of fatty acid synthase (FASN) as a bona fide drug target for oncology. This review will highlight the foundational concepts upon which this perspective is built. Published studies have shown that high levels of FASN in patient tumor tissues are present at later stages of disease and this overexpression predicts poor prognosis.

View Article and Find Full Text PDF

Palmitate, the enzymatic product of FASN, and palmitate-derived lipids support cell metabolism, membrane architecture, protein localization, and intracellular signaling. Tubulins are among many proteins that are modified post-translationally by acylation with palmitate. We show that FASN inhibition with TVB-3166 or TVB-3664 significantly reduces tubulin palmitoylation and mRNA expression.

View Article and Find Full Text PDF

Background:  Human cytomegalovirus (HCMV) infection causes disease in newborns and transplant recipients. A HCMV vaccine (Towne) protects transplant recipients.

Methods:  The genomes of Towne and the nonattenuated Toledo strain were recombined, yielding 4 Towne/Toledo chimera vaccines.

View Article and Find Full Text PDF

Fatty acid synthase (FASN) catalyzes the de novo synthesis of palmitate, a fatty acid utilized for synthesis of more complex fatty acids, plasma membrane structure, and post-translational palmitoylation of host and viral proteins. We have developed a potent inhibitor of FASN (TVB-3166) that reduces the production of respiratory syncytial virus (RSV) progeny in vitro from infected human lung epithelial cells (A549) and in vivo from mice challenged intranasally with RSV. Addition of TVB-3166 to the culture medium of RSV-infected A549 cells reduces viral spread without inducing cytopathic effects.

View Article and Find Full Text PDF

Unlabelled: Inhibition of de novo palmitate synthesis via fatty acid synthase (FASN) inhibition provides an unproven approach to cancer therapy with a strong biological rationale. FASN expression increases with tumor progression and associates with chemoresistance, tumor metastasis, and diminished patient survival in numerous tumor types. TVB-3166, an orally-available, reversible, potent, and selective FASN inhibitor induces apoptosis, inhibits anchorage-independent cell growth under lipid-rich conditions, and inhibits in-vivo xenograft tumor growth.

View Article and Find Full Text PDF

Fatty acid synthase (FASN) generates the de novo source of lipids for cell proliferation and is a promising cancer therapy target. Development of FASN inhibitors, however, necessitates a better understanding of sensitive and resistant cancer types to optimize patient treatment. Indeed, testing the cytotoxic effects of FASN inhibition across human cancer cells revealed diverse sensitivities.

View Article and Find Full Text PDF

Live attenuated cold-adapted (ca) H5N1, H7N3, H6N1, and H9N2 influenza vaccine viruses replicated in the respiratory tract of mice and ferrets, and 2 doses of vaccines were immunogenic and protected these animals from challenge infection with homologous and heterologous wild-type (wt) viruses of the corresponding subtypes. However, when these vaccine candidates were evaluated in phase I clinical trials, there were inconsistencies between the observations in animal models and in humans. The vaccine viruses did not replicate well and immune responses were variable in humans, even though the study subjects were seronegative with respect to the vaccine viruses before vaccination.

View Article and Find Full Text PDF

Unlabelled: H2 influenza viruses have not circulated in humans since 1968, and therefore a significant portion of the population would be susceptible to infection should H2 influenza viruses reemerge. H2 influenza viruses continue to circulate in avian reservoirs worldwide, and these reservoirs are a potential source from which these viruses could emerge. Three reassortant cold-adapted (ca) H2 pandemic influenza vaccine candidates with hemagglutinin (HA) and neuraminidase (NA) genes derived from the wild-type A/Japan/305/1957 (H2N2) (Jap/57), A/mallard/6750/1978 (H2N2) (mal/78), or A/swine/MO/4296424/2006 (H2N3) (sw/06) viruses and the internal protein gene segments from the A/Ann Arbor/6/60 ca virus were generated by plasmid-based reverse genetics (Jap/57 ca, mal/78 ca, and sw/06 ca, respectively).

View Article and Find Full Text PDF

The first live attenuated influenza vaccine (LAIV) was licensed in the USA in 2003; it is a trivalent vaccine composed of two type A (H1N1 and H3N2) and one type B influenza virus each at 10(7) fluorescent focus units (FFU). Each influenza vaccine strain is a reassortant virus that contains the hemagglutinin (HA) and neuraminidase (NA) gene segments from a wild-type influenza virus and the six internal protein gene segments from a master donor virus (MDV) of either cold-adapted A/Ann Arbor/6/60 or B/Ann Arbor/1/66. MDV confers the cold-adapted, temperature-sensitive, and attenuation phenotypes to the vaccine strains.

View Article and Find Full Text PDF

Background: Live attenuated influenza vaccines (LAIV) against a variety of strains of pandemic potential are being developed and tested. We describe the results of an open-label phase I trial of a live attenuated H2N2 virus vaccine.

Objectives: To evaluate the safety, infectivity, and immunogenicity of a live attenuated H2N2 influenza virus vaccine.

View Article and Find Full Text PDF

Background: We describe the results of an open label Phase I trial of a live attenuated H6N1 influenza virus vaccine (ClinicalTrials.gov Identifier: NCT00734175).

Methods And Findings: We evaluated the safety, infectivity, and immunogenicity of two doses of 10(7) TCID(50) of the H6N1 Teal HK 97/AA ca vaccine, a cold-adapted and temperature sensitive live, attenuated influenza vaccine (LAIV) in healthy seronegative adults.

View Article and Find Full Text PDF

The role of seasonal influenza vaccination in pandemic influenza A H1N1 disease is important to address, because a large segment of the population is vaccinated annually. We administered 1 or 2 doses of pandemic H1N1 vaccine (CA/7 ca), a seasonal trivalent inactivated (s-TIV), or live attenuated influenza vaccine (s-LAIV) to mice and ferrets and subsequently challenged them with a pandemic H1N1 virus. In both species, CA/7 ca was immunogenic and conferred complete protection against challenge.

View Article and Find Full Text PDF

Conventional measurement of antibody responses to vaccines largely relies on serum antibodies, which are primarily produced by bone marrow plasma cells and may not represent the entire vaccine-induced B cell repertoire, including important functional components such as those targeted to mucosal sites. After immunization or infection, activated B cells differentiate into plasmablasts in local lymphoid organs, then traffic through circulation to the target sites where they further develop into plasma cells. On day 7 after influenza vaccination, a burst of plasmablasts, highly enriched for vaccine-specific antibody secreting cells, appears in the peripheral blood.

View Article and Find Full Text PDF

Background: The safety, tolerability, and immunogenicity of a monovalent intranasal 2009 A/H1N1 live attenuated influenza vaccine (LAIV) were evaluated in children and adults.

Methods/principal Findings: Two randomized, double-blind, placebo-controlled studies were completed in children (2-17 y) and adults (18-49 y). Subjects were assigned 4:1 to receive 2 doses of H1N1 LAIV or placebo 28 days apart.

View Article and Find Full Text PDF