Publications by authors named "George Kaptay"

The Hungarian baron Roland Eötvös (Eötvös Loránd, 1848-1919) lived in the difficult period between two revolutions in Hungary, but nevertheless he achieved revolutionary results in two fields of science: capillarity (1875-1886) and gravity (after 1886). This paper describes his famous capillary equation published in 1886 in the world-language of the time (German) and in one of the most famous scientific journals of the time (Annalen der Physik und Chemie). In his paper he showed a simple equation for the temperature dependence of surface tension of one-component liquids and more importantly he showed that this quantity approaches zero as temperature tends towards the critical temperature.

View Article and Find Full Text PDF

An efficient and reproducible growth of vertically aligned carbon nanotubes by CCVD requires accurate and specific setting of the synthesis parameters and the properties of catalyst thin layers. In this work, the growth of vertically aligned carbon nanotubes onto AZO (= aluminum doped zinc oxide) glass substrate covered by AlO and Fe-Co catalyst layer system is presented. Investigation of the effect of catalyst composition and synthesis temperature on CVD growth revealed the optimum condition of the synthesis.

View Article and Find Full Text PDF

Nanocomposites show the best performance when their reinforcing phase precipitates in situ from a matrix upon heat treatment and when coherency between the matrix and the reinforcing phase is preserved even upon coarsening the precipitated particles. In this paper, first a new equation is derived for the interfacial energy of strained coherent interfaces. From here, a new design rule is derived in a form of a new dimensionless number to select phase combinations for in situ coherent nanocomposites (ISCNCs).

View Article and Find Full Text PDF

Excellent thermal conductivity is beneficial for the fast heat release during service of cemented carbides. Thus, thermal conductivity is a significant property of cemented carbides, considerably affecting their service life. Still, there is a lack of systematic investigation into the thermal conductivity of two-phase WC-Co-Ni cemented carbides.

View Article and Find Full Text PDF

Several metal oxide nanoparticles (NPs) were already obtained by mixing NaOH solution with chloride solution of the corresponding metal to form metal hydroxide or oxide precipitates and wash-dry-calcine the latter. However, the complete list of metal oxide NPs is missing with which this technology works well. The aim of this study was to fill this knowledge gap and to provide a full list of possible metals for which this technology probably works well.

View Article and Find Full Text PDF

The surface melting of macro-crystals and melting of nano-crystals for Al, Cu and Ag pure components are modeled in comparison with literature data. The relevant temperatures of surface premelting and melting are calculated. The corresponding temperature-dependent equilibrium thickness of the liquid melted layer is obtained as well, which tends to infinity when the temperature is at the bulk melting point.

View Article and Find Full Text PDF

In this paper first a generally valid model is derived from the two fundamental equations of Gibbs for temperature and composition dependences of all types of interfacial energies. This general model is applied here to develop a coherent set of particular model equations for surface tension of liquid metals and alloys, for surface energy of solid metals and alloys, for high-angle grain boundary energy in metals and alloys, for solid/liquid interfacial energy in metals and alloys, for liquid/liquid interfacial energy in alloys and for solid/solid interfacial energy in metals and alloys. The latter case is sub-divided into models on coherent, incoherent and semi-coherent interfaces with the same phases and with different phases on the two sides of the interface.

View Article and Find Full Text PDF

The best possible methods are needed to evaluate the scientific excellence of individuals and research groups in order to award positions and distribute research grants with higher efficiency. It is shown here that for the symmetrical distribution of citations of an individual the currently used h-index is approximately half of the square root of the total number of citations, according to the rule of Hirsch. It is also shown that deviations from this "ideal" h-index are common and they are due to deviations in the citation distributions of different individuals.

View Article and Find Full Text PDF

The Butler equation was published in 1932 to describe the equilibrium surface composition and equilibrium surface tension of solutions. Unfortunately, it used the so-called "partial surface tension of a component", which was not properly defined by Butler, leading to a reluctant acceptance of this equation. Although the present author defined the partial surface tension recently in this journal, it is considered an advantage to derive the same key equations of Butler without the need to employ the concept of partial surface tension.

View Article and Find Full Text PDF

In the most influential monograph on colloid and interfacial science by Adamson three fundamental equations of "physical chemistry of surfaces" are identified: the Laplace equation, the Kelvin equation and the Gibbs adsorption equation, with a mechanical definition of surface tension by Young as a starting point. Three of them (Young, Laplace and Kelvin) are called here the "mechanical paradigm". In contrary it is shown here that there is only one fundamental equation of the thermodynamics of colloid and interface science and all the above (and other) equations of this field follow as its derivatives.

View Article and Find Full Text PDF

The condition of negative surface tension of a binary regular solution is discussed in this paper using the recently reconfirmed Butler equation (Langmuir 2015, 31, 5796-5804). It is shown that the surface tension becomes negative only for solutions with strong repulsion between the components. This repulsion for negative surface tension should be so strong that this phenomenon appears only within a miscibility gap, that is, in a two-phase region of macroscopic liquid solutions.

View Article and Find Full Text PDF

Heat effects for the addition of Co in bulk and nanosized forms into the liquid Sn-3.8Ag-0.7Cu alloy were studied using drop calorimetry at four temperatures between 673 and 1173 K.

View Article and Find Full Text PDF

First, extending the boundaries of the thermodynamic framework of Gibbs, a definition of the partial surface tension of a component of a solution is provided. Second, a formal thermodynamic relationship is established between the partial surface tensions of different components of a solution and the surface tension of the same solution. Third, the partial surface tension of a component is derived as a function of bulk and surface concentrations of the given component, using general equations for the thermodynamics of solutions.

View Article and Find Full Text PDF

The Kelvin equation, the Gibbs equation and the Gibbs-Thomson equation are compared. It is shown that the Kelvin equation (on equilibrium vapor pressure above nano-droplets) can be derived if the inner pressure due to the curvature (from the Laplace equation) is substituted incorrectly into the external pressure term of the Gibbs equation. Thus, the Kelvin equation is excluded in its present form.

View Article and Find Full Text PDF

The phase rule of Gibbs has been extended to nano-systems in this paper. For that, first the total number of atoms or stable molecules (N) in the system is selected as a new independent thermodynamic variable to characterize the size of nano-systems. N is preferred to r (the radius of the system) as the volume and radius are functions of other independent variables (p, T, composition) and therefore r is not an independent variable.

View Article and Find Full Text PDF