Publications by authors named "George J Papanicolaou"

Article Synopsis
  • * The study involved 6,722 participants (including both predominantly White and African American cohorts) to identify proteins associated with lung function, using advanced proteomic methods and spirometry data.
  • * Findings revealed 254 proteins linked to lung function, with 15 proteins associated with the decline in lung function over time, highlighting significant biological pathways like immune response and matrix remodeling.
View Article and Find Full Text PDF

Exposure of biological systems to acute or chronic insults triggers a host of molecular and physiological responses to either tolerate, adapt, or fully restore homeostasis; these responses constitute the hallmarks of resilience. Given the many facets, dimensions, and discipline-specific focus, gaining a shared understanding of "resilience" has been identified as a priority for supporting advances in cardiovascular health. This report is based on the working definition: "Resilience is the ability of living systems to successfully maintain or return to homeostasis in response to physical, molecular, individual, social, societal, or environmental stressors or challenges," developed after considering many factors contributing to cardiovascular resilience through deliberations of multidisciplinary experts convened by the National Heart, Lung, and Blood Institute during a workshop entitled: "Enhancing Resilience for Cardiovascular Health and Wellness.

View Article and Find Full Text PDF

Deficiency of the immune checkpoint lymphocyte activation gene-3 (LAG3) protein is significantly associated with both elevated HDL-cholesterol (HDL-C) and myocardial infarction risk. We determined the association of genetic variants within ±500 kb of LAG3 with plasma LAG3 and defined LAG3-associated plasma proteins with HDL-C and clinical outcomes. Whole genome sequencing and plasma proteomics were obtained from the Multi-Ethnic Study of Atherosclerosis (MESA) and the Framingham Heart Study (FHS) cohorts as part of the Trans-Omics for Precision Medicine program.

View Article and Find Full Text PDF

Clonal hematopoiesis of indeterminate potential (CHIP) is a common precursor state for blood cancers that most frequently occurs due to mutations in the DNA-methylation modifying enzymes DNMT3A or TET2. We used DNA-methylation array and whole-genome sequencing data from four cohorts together comprising 5522 persons to study the association between CHIP, epigenetic clocks, and health outcomes. CHIP was strongly associated with epigenetic age acceleration, defined as the residual after regressing epigenetic clock age on chronological age, in several clocks, ranging from 1.

View Article and Find Full Text PDF
Article Synopsis
  • The Trans-Omics for Precision Medicine (TOPMed) programme aims to understand the genetic factors behind heart, lung, blood, and sleep disorders to enhance their diagnosis, treatment, and prevention.
  • TOPMed uses whole-genome sequencing from diverse individuals, revealing over 400 million genetic variants, many of which are rare and offer insights into human evolution and disease mechanisms.
  • The programme provides tools like a variant browser and access to genomic data, improving the capability of genome-wide association studies to include rare variants that could have significant health implications.
View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on identifying genetic factors that impact kidney function, specifically estimated glomerular filtration rate (eGFR), by using whole genome sequencing data from over 23,000 participants of various ancestries.
  • Researchers discovered three new genetic loci linked to eGFR that are primarily found in non-European populations, indicating the importance of low-frequency variants.
  • The findings underscore the need for more diverse genetic research, as many influential kidney traits may be underrepresented in studies focused on predominantly European ancestries.
View Article and Find Full Text PDF

Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD), diagnosed by reduced lung function, is a leading cause of morbidity and mortality. We performed whole genome sequence (WGS) analysis of lung function and COPD in a multi-ethnic sample of 11,497 participants from population- and family-based studies, and 8499 individuals from COPD-enriched studies in the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program. We identify at genome-wide significance 10 known GWAS loci and 22 distinct, previously unreported loci, including two common variant signals from stratified analysis of African Americans.

View Article and Find Full Text PDF

Emerging data science techniques of predictive analytics expand the quality and quantity of complex data relevant to human health and provide opportunities for understanding and control of conditions such as heart, lung, blood, and sleep disorders. To realize these opportunities, the information sources, the data science tools that use the information, and the application of resulting analytics to health and health care issues will require implementation research methods to define benefits, harms, reach, and sustainability; and to understand related resource utilization implications to inform policymakers. This JACC State-of-the-Art Review is based on a workshop convened by the National Heart, Lung, and Blood Institute to explore predictive analytics in the context of implementation science.

View Article and Find Full Text PDF

Most genome-wide association and fine-mapping studies to date have been conducted in individuals of European descent, and genetic studies of populations of Hispanic/Latino and African ancestry are limited. In addition, these populations have more complex linkage disequilibrium structure. In order to better define the genetic architecture of these understudied populations, we leveraged >100,000 phased sequences available from deep-coverage whole genome sequencing through the multi-ethnic NHLBI Trans-Omics for Precision Medicine (TOPMed) program to impute genotypes into admixed African and Hispanic/Latino samples with genome-wide genotyping array data.

View Article and Find Full Text PDF

Cardiovascular diseases remain the leading cause of mortality and a major contributor to preventable deaths worldwide. The dominant modifiable risk factors and the social and environmental determinants that increase cardiovascular risk are known, and collectively, are as important in racial and ethnic minority populations as they are in majority populations. Their prevention and treatment remain the foundation for cardiovascular health promotion and disease prevention.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) affects ~10% of the global population, with considerable ethnic differences in prevalence and aetiology. We assemble genome-wide association studies of estimated glomerular filtration rate (eGFR), a measure of kidney function that defines CKD, in 312,468 individuals of diverse ancestry. We identify 127 distinct association signals with homogeneous effects on eGFR across ancestries and enrichment in genomic annotations including kidney-specific histone modifications.

View Article and Find Full Text PDF

Importance: Atrial fibrillation (AF) is the most common arrhythmia affecting 1% of the population. Young individuals with AF have a strong genetic association with the disease, but the mechanisms remain incompletely understood.

Objective: To perform large-scale whole-genome sequencing to identify genetic variants related to AF.

View Article and Find Full Text PDF

Electrocardiographic PR interval measures atrio-ventricular depolarization and conduction, and abnormal PR interval is a risk factor for atrial fibrillation and heart block. Our genome-wide association study of over 92,000 European-descent individuals identifies 44 PR interval loci (34 novel). Examination of these loci reveals known and previously not-yet-reported biological processes involved in cardiac atrial electrical activity.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is a common heritable disorder displaying marked sexual dimorphism in disease prevalence and progression. Previous genetic association studies have identified a few genetic loci associated with OSA and related quantitative traits, but they have only focused on single ethnic groups, and a large proportion of the heritability remains unexplained. The apnea-hypopnea index (AHI) is a commonly used quantitative measure characterizing OSA severity.

View Article and Find Full Text PDF

The exploding volume of whole-genome sequence (WGS) and multi-omics data requires new approaches for analysis. As one solution, we have created a cloud-based Analysis Commons, which brings together genotype and phenotype data from multiple studies in a setting that is accessible by multiple investigators. This framework addresses many of the challenges of multi-center WGS analyses, including data sharing mechanisms, phenotype harmonization, integrated multi-omics analyses, annotation, and computational flexibility.

View Article and Find Full Text PDF

Recently, many new approaches, study designs, and statistical and analytical methods have emerged for studying gene-environment interactions (G×Es) in large-scale studies of human populations. There are opportunities in this field, particularly with respect to the incorporation of -omics and next-generation sequencing data and continual improvement in measures of environmental exposures implicated in complex disease outcomes. In a workshop called "Current Challenges and New Opportunities for Gene-Environment Interaction Studies of Complex Diseases," held October 17-18, 2014, by the National Institute of Environmental Health Sciences and the National Cancer Institute in conjunction with the annual American Society of Human Genetics meeting, participants explored new approaches and tools that have been developed in recent years for G×E discovery.

View Article and Find Full Text PDF

Hypertension is a leading cause of global disease, mortality, and disability. While individuals of African descent suffer a disproportionate burden of hypertension and its complications, they have been underrepresented in genetic studies. To identify novel susceptibility loci for blood pressure and hypertension in people of African ancestry, we performed both single and multiple-trait genome-wide association analyses.

View Article and Find Full Text PDF

Genetic variants contribute to normal variation of iron-related traits and may also cause clinical syndromes of iron deficiency or excess. Iron overload and deficiency can adversely affect human health. For example, elevated iron storage is associated with increased diabetes risk, although mechanisms are still being investigated.

View Article and Find Full Text PDF

Meta-analyses of association results for blood pressure using exome-centric single-variant and gene-based tests identified 31 new loci in a discovery stage among 146,562 individuals, with follow-up and meta-analysis in 180,726 additional individuals (total n = 327,288). These blood pressure-associated loci are enriched for known variants for cardiometabolic traits. Associations were also observed for the aggregation of rare and low-frequency missense variants in three genes, NPR1, DBH, and PTPMT1.

View Article and Find Full Text PDF

We analyzed genome-wide association studies (GWASs), including data from 71,638 individuals from four ancestries, for estimated glomerular filtration rate (eGFR), a measure of kidney function used to define chronic kidney disease (CKD). We identified 20 loci attaining genome-wide-significant evidence of association (p < 5 × 10(-8)) with kidney function and highlighted that allelic effects on eGFR at lead SNPs are homogeneous across ancestries. We leveraged differences in the pattern of linkage disequilibrium between diverse populations to fine-map the 20 loci through construction of "credible sets" of variants driving eGFR association signals.

View Article and Find Full Text PDF

Imputation is commonly used in genome-wide association studies to expand the set of genetic variants available for analysis. Larger and more diverse reference panels, such as the final Phase 3 of the 1000 Genomes Project, hold promise for improving imputation accuracy in genetically diverse populations such as Hispanics/Latinos in the USA. Here, we sought to empirically evaluate imputation accuracy when imputing to a 1000 Genomes Phase 3 versus a Phase 1 reference, using participants from the Hispanic Community Health Study/Study of Latinos.

View Article and Find Full Text PDF

Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the LMM's constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT).

View Article and Find Full Text PDF