Publications by authors named "George J Eiermann"

Aims: Since 2006, DPP-4 inhibitors have become established therapy for the treatment of type 2 diabetes. Despite sharing a common mechanism of action, considerable chemical diversity exists amongst members of the DPP-4 inhibitor class, raising the question as to whether structural differences may result in differentiated enzyme inhibition and antihyperglycaemic activity.

Methods: We have compared the binding properties of the most commonly used inhibitors and have investigated the relationship between their inhibitory potency at the level of the enzyme and their acute glucose-lowering efficacy.

View Article and Find Full Text PDF

Systemically acting glucokinase activators (GKA) have been demonstrated in clinical trials to effectively lower blood glucose in patients with type II diabetes. However, mechanism-based hypoglycemia is a major adverse effect that limits the therapeutic potential of these agents. We hypothesized that the predominant mechanism leading to hypoglycemia is GKA-induced excessive insulin secretion from pancreatic β-cells at (sub-)euglycemic levels.

View Article and Find Full Text PDF

Glucokinase (GK, hexokinase IV) is a unique hexokinase that plays a central role in mammalian glucose homeostasis. Glucose phosphorylation by GK in the pancreatic β-cell is the rate-limiting step that controls glucose-stimulated insulin secretion. Similarly, GK-mediated glucose phosphorylation in hepatocytes plays a major role in increasing hepatic glucose uptake and metabolism and possibly lowering hepatic glucose output.

View Article and Find Full Text PDF

GPR142 has been identified as a potential glucose-stimulated insulin secretion (GSIS) target for the treatment of type 2 diabetes mellitus (T2DM). A class of triazole GPR142 agonists was discovered through a high throughput screen. The lead compound suffered from poor metabolic stability and poor solubility.

View Article and Find Full Text PDF

Aberrant regulation of glucose production makes a critical contribution to the impaired glycemic control that is observed in type 2 diabetes. Although isotopic tracer methods have proven to be informative in quantifying the magnitude of such alterations, it is presumed that one must rely on venous access to administer glucose tracers which therein presents obstacles for the routine application of tracer methods in rodent models. Since intraperitoneal injections are readily used to deliver glucose challenges and/or dose potential therapeutics, we hypothesized that this route could also be used to administer a glucose tracer.

View Article and Find Full Text PDF

MK-4256, a tetrahydro-β-carboline sstr3 antagonist, was discontinued due to a cardiovascular (CV) adverse effect observed in dogs. Additional investigations revealed that the CV liability (QTc prolongation) was caused by the hERG off-target activity of MK-4256 and was not due to sstr3 antagonism. In this Letter, we describe our extensive SAR effort at the C3 position of the tetrahydro-β-carboline structure.

View Article and Find Full Text PDF

The imidazolyl-tetrahydro-β-carboline class of sstr3 antagonists have demonstrated efficacy in a murine model of glucose excursion and may have potential as a treatment for type 2 diabetes. The first candidate in this class caused unacceptable QTc interval prolongation in oral, telemetrized cardiovascular (CV) dogs. Herein, we describe our efforts to identify an acceptable candidate without CV effects.

View Article and Find Full Text PDF
Article Synopsis
  • Antagonizing somatostatin subtype receptor 3 (sstr3) has potential as a treatment for Type 2 diabetes, but the preclinical candidate MK-4256 was discontinued due to heart-related side effects in dogs.
  • Researchers explored a series of compounds to minimize unwanted hERG channel activity, identifying a key compound, 3A, that effectively targets sstr3 without significantly affecting heart function.
  • 3A was shown to lower glucose levels in mice and had minimal side effects in cardiovascular dog models, indicating that sstr3 antagonism doesn't cause QTc prolongation, allowing the research program to move forward.
View Article and Find Full Text PDF

A novel class of small-molecule, highly potent, and subtype-selective somatostatin SST3 agonists was discovered through modification of a SST3 antagonist. As an example, (1R,2S)-9 demonstrated not only potent in vitro SST3 agonist activity but also in vivo SST3 agonist activity in a mouse oral glucose tolerance test (OGTT). These agonists may be useful reagents for studying the physiological roles of the SST3 receptor and may potentially be useful as therapeutic agents.

View Article and Find Full Text PDF

A structure-activity relationship study of the imidazolyl-β-tetrahydrocarboline series identified MK-4256 as a potent, selective SSTR3 antagonist, which demonstrated superior efficacy in a mouse oGTT model. MK-4256 reduced glucose excursion in a dose-dependent fashion with maximal efficacy achieved at doses as low as 0.03 mg/kg po.

View Article and Find Full Text PDF

Glucagon-like peptide-1 (GLP-1) and oxyntomodulin (OXM) are peptide hormones secreted postprandially from the gut that stimulate insulin secretion in a glucose-dependent manner. OXM activates both the GLP-1 receptor (GLP1R) and the glucagon receptor (GCGR). It has been suggested that OXM acutely modulates glucose metabolism solely through GLP1R agonism.

View Article and Find Full Text PDF

This letter provides the first pharmacological proof of principle that the sst3 receptor mediates glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. To enable these studies, we identified the selective sst3 antagonist (1R,3R)-3-(5-phenyl-1H-imidazol-2-yl)-1-(tetrahydro-2H-pyran-4-yl)-2,3,4,9-tetrahydro-1H-β-carboline (5a), with improved ion channel selectivity and mouse pharmacokinetic properties as compared to previously described tetrahydro-β-carboline imidazole sst3 antagonists. We demonstrated that compound 5a enhances GSIS in pancreatic β-cells and blocks glucose excursion induced by dextrose challenge in ipGTT and OGTT models in mice.

View Article and Find Full Text PDF

In an attempt to understand the applicability of various animal models to dyslipidemia in humans and to identify improved preclinical models for target discovery and validation for dyslipidemia, we measured comprehensive plasma lipid profiles in 24 models. These included five mouse strains, six other nonprimate species, and four nonhuman primate (NHP) species, and both healthy animals and animals with metabolic disorders. Dyslipidemic humans were assessed by the same measures.

View Article and Find Full Text PDF

The design, synthesis, and structure-activity relationship (SAR) for a series of β-substituted 3-(4-aryloxyaryl)propanoic acid GPR40 agonists is described. Systematic replacement of the pendant aryloxy group led to identification of potent GPR40 agonists. In order to identify candidates suitable for in vivo validation of the target, serum shifted potency and pharmacokinetic properties were determined for several compounds.

View Article and Find Full Text PDF

Systematic structure-activity relationship (SAR) studies of a screening lead led to the discovery of a series of thiazolidinediones (TZDs) as potent GPR40 agonists. Among them, compound C demonstrated an acute mechanism-based glucose-lowering in an intraperitoneal glucose tolerance test (IPGTT) in lean mice, while no effects were observed in GPR40 knock-out mice.

View Article and Find Full Text PDF

Inhibition of dipeptidyl peptidase-4 (DPP-4) activity has been shown to improve glycemic control in patients with type 2 diabetes by prolonging and potentiating the actions of incretin hormones. This study is designed to determine the effects of the DPP-4 inhibitor sitagliptin on improving islet function in a mouse model of insulin resistance and insulin secretion defects. ICR mice were pre-treated with high fat diet and a low dose of streptozotocin to induce insulin resistance and impaired insulin secretion, respectively.

View Article and Find Full Text PDF

A new series of DPP-4 inhibitors derived from piperidine-fused benzimidazoles and imidazopyridines is described. Optimization of this class of DPP-4 inhibitors led to the discovery of imidazopyridine 34. The potency, selectivity, cross-species DMPK profiles, and in vivo efficacy of 34 is reported.

View Article and Find Full Text PDF

Objective: Acute activation of G protein-coupled receptor 40 (GPR40) by free fatty acids (FFAs) or synthetic GPR40 agonists enhances insulin secretion. However, it is still a matter of debate whether activation of GPR40 would be beneficial for the treatment of type 2 diabetes, since chronic exposure to FFAs impairs islet function. We sought to evaluate the specific role of GPR40 in islets and its potential as a therapeutic target using compounds that specifically activate GPR40.

View Article and Find Full Text PDF

The presence of serum in biological samples often negatively impacts the quality of in vitro assays. However, assays tolerant of serum are useful for assessing the in vivo availability of a small molecule for its target. Electrophysiology assays of ion channels are notoriously sensitive to serum because of their reliance on the interaction of the plasma membrane with a recording electrode.

View Article and Find Full Text PDF

A series of beta-aminoamides bearing triazolopiperazines have been discovered as potent, selective, and orally active dipeptidyl peptidase IV (DPP-4) inhibitors by extensive structure-activity relationship (SAR) studies around the triazolopiperazine moiety. Among these, compound 34b with excellent in vitro potency (IC50 = 4.3 nM) against DPP-4, high selectivity over other enzymes, and good pharmacokinetic profiles exhibited pronounced in vivo efficacy in an oral glucose tolerance test (OGTT) in lean mice.

View Article and Find Full Text PDF

A novel series of 4-arylcyclohexylalanine DPP-4 inhibitors was synthesized and tested for inhibitory activity as well as selectivity over the related proline-specific enzymes DPP-8 and DPP-9. Optimization of this series led to 28 (DPP-4 IC(50)=4.8 nM), which showed an excellent pharmacokinetic profile across several preclinical species.

View Article and Find Full Text PDF

Various beta-amino amides containing triazolopiperazine heterocycles have been prepared and evaluated as potent, selective, orally active dipeptidyl peptidase IV (DPP-4) inhibitors. These compounds display excellent oral bioavailability and good overall pharmacokinetic profiles in preclinical species. Moreover, in vivo efficacy in an oral glucose tolerance test in lean mice is demonstrated.

View Article and Find Full Text PDF

A series of beta-aminoamides bearing triazolopiperazines has been prepared and evaluated as potent, selective, orally active dipeptidyl peptidase IV (DPP-4) inhibitors. Efforts at optimization of the beta-aminoamide series, which ultimately led to the discovery of JANUVIA (sitagliptin phosphate, compound 1), are described.

View Article and Find Full Text PDF

A novel series of 4-aminophenylalanine and 4-aminocyclohexylalanine derivatives were designed and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-4). The phenylalanine series afforded compounds such as 10 that were potent and selective (DPP-4, IC(50)=28nM), but exhibited limited oral bioavailability. The corresponding cyclohexylalanine derivatives such as 25 afforded improved PK exposure and efficacy in a murine OGTT experiment.

View Article and Find Full Text PDF

A novel series of oxadiazole based amides have been shown to be potent DPP-4 inhibitors. The optimized compound 43 exhibited excellent selectivity over a variety of DPP-4 homologs.

View Article and Find Full Text PDF