Biomimetics (Basel)
January 2023
The main advantages of spiking neural networks are the high biological plausibility and their fast response due to spiking behaviour. The response time decreases significantly in the hardware implementation of SNN because the neurons operate in parallel. Compared with the traditional computational neural network, the SNN use a lower number of neurons, which also reduces their cost.
View Article and Find Full Text PDFBiomimetics (Basel)
May 2022
Spiking neural networks are able to control with high precision the rotation and force of single-joint robotic arms when shape memory alloy wires are used for actuation. Bio-inspired robotic arms such as anthropomorphic fingers include more junctions that are actuated simultaneously. Starting from the hypothesis that the motor cortex groups the control of multiple muscles into neural synergies, this work presents for the first time an SNN structure that is able to control a series of finger motions by activation of groups of neurons that drive the corresponding actuators in sequence.
View Article and Find Full Text PDFAnthropomorphic hands that mimic the smoothness of human hand motions should be controlled by artificial units of high biological plausibility. Adaptability is among the characteristics of such control units, which provides the anthropomorphic hand with the ability to learn motions. This paper presents a simple structure of an adaptive spiking neural network implemented in analogue hardware that can be trained using Hebbian learning mechanisms to rotate the metacarpophalangeal joint of a robotic finger towards targeted angle intervals.
View Article and Find Full Text PDF