In this study, Kraft lignin was modified by ammonium dihydrogen phosphate (ADP) and urea for achieving phosphorylation and carbamylation, aiming to protect wood against biological and fire attack. Scots pine (Pinus sylvestris L.) sapwood was impregnated with a water solution containing Kraft lignin, ADP, and urea, followed by heat treatment at 150 °C, resulting in changes in the properties of the Kraft lignin as well as the wood matrix.
View Article and Find Full Text PDFThe exterior application of fire-retardant (FR) timber necessitates it to have high durability because of the possibility to be exposed to rainfall. In this study, water-leaching resistance of FR wood has been imparted by grafting phosphate and carbamate groups of the water-soluble FR additives ammonium dihydrogen phosphate (ADP)/urea onto the hydroxyl groups of wood polymers via vacuum-pressure impregnation, followed by drying/heating in hot air. A darker and more reddish wood surface was observed after the modification.
View Article and Find Full Text PDFGuanyl-urea phosphate (GUP) was introduced into furfurylated wood in order to improve fire retardancy. Modified wood was produced via vacuum-pressure impregnation of the GUP-furfuryl alcohol (FA) aqueous solution, which was then polymerized at elevated temperature. The water leaching resistance of the treated wood was tested according to European standard EN 84, while the leached water was analyzed using ultra-performance liquid chromatography (UPLC) and inductively coupled plasma-sector field mass spectrometry (ICP-SFMS).
View Article and Find Full Text PDFThe objective of the work was to improve the leaching resistance of fire-retardant (FR) modified wood by the incorporation of a thermoset resin. Here, Scots pine ( L.) sapwood was impregnated with melamine formaldehyde (MF) resin and hydrophilic FRs guanyl-urea phosphate/boric acid by a vacuum-pressure treatment.
View Article and Find Full Text PDFThe potential of producing eco-friendly, formaldehyde-free, high-density fiberboard (HDF) panels from hardwood fibers bonded with urea-formaldehyde (UF) resin and a novel ammonium lignosulfonate (ALS) is investigated in this paper. HDF panels were fabricated in the laboratory by applying a very low UF gluing factor (3%) and ALS content varying from 6% to 10% (based on the dry fibers). The physical and mechanical properties of the fiberboards, such as water absorption (WA), thickness swelling (TS), modulus of elasticity (MOE), bending strength (MOR), internal bond strength (IB), as well as formaldehyde content, were determined in accordance with the corresponding European standards.
View Article and Find Full Text PDFIn this research, acetylated wood (Accoya) was tested in ground contact in central Greece. After ten years of exposure during a ground stake test, acetylated pine wood () stakes, with a 20% acetyl weight gain, were completely intact and showed no visual decay (decay rating: 0). However, the key mechanical properties of Accoya wood, that is, modulus of elasticity (MOE) and modulus of rupture (MOR) after 10 years of ground contact, were significantly reduced by 32.
View Article and Find Full Text PDF