Environmental monitoring and remediation often requires the collection of harmful substances from aqueous solutions. Absorption with solids is a useful technique for binding such substances even at very low concentration levels. Many of these contaminants are weak acids or bases.
View Article and Find Full Text PDFMolecularly imprinted polymers have been shown to be useful in competitive biomimetic binding assays. Recent developments in materials science have further enhanced the capabilities of imprinted polymers. Binding assays, biological and biomimetic alike, owe their usefulness to their selectivity.
View Article and Find Full Text PDFUnderstanding the role of the counterion species in surfactant solutions is a complicated task, made harder by the fact that, experimentally, it is not possible to vary independently bulk and surface quantities. Here, we perform molecular dynamics simulations at constant surface coverage of the liquid/vapor interface of lithium, sodium, potassium, rubidium, and cesium dodecyl sulfate aqueous solutions. We investigate the effect of counterion type and charge sign on the surface tension of the solution, analyzing the contribution of different species and moieties to the lateral pressure profile.
View Article and Find Full Text PDFThe general claim about novel molecularly imprinted polymers is that they are selective for their template or for another target compound. This claim is usually proved by some kind of experiment, in which a performance parameter of the imprinted polymer is shown to be better towards its template than towards interferents. A closer look at such experiments shows, however, that different experiments may differ substantially in what they tell about the same imprinted polymer's selectivity.
View Article and Find Full Text PDFRecent studies have shown anomalies with the most studied non-covalent molecularly imprinted polymer, the propranolol imprinted one. This imprinted polymer, like many others, binds more template than the non-imprinted control polymer, but its selectivity in template adsorption is only slightly or not at all improved by imprinting, depending on the compound compared. The reasons for this anomaly are discovered here.
View Article and Find Full Text PDFA novel method is successfully tested for non-covalent imprinting. Conditions are used which practically exclude the formation of prepolymerization complexes. The template is cholesterol, and no so-called functional monomer is used.
View Article and Find Full Text PDFThe changes in extensive thermodynamic quantities, such as volume, energy, Helmholtz free energy and entropy, occurring upon mixing liquid methanol with supercritical CO, are calculated using Monte Carlo simulations and thermodynamic integration for all eight combinations of four methanol and two CO potential models in the entire composition range at 313 K. The obtained results are also compared with experimental data whenever possible. The transition of the system from liquid to a supercritical state is found to occur at this temperature around a CO mole fraction value of 0.
View Article and Find Full Text PDFThis work presents three new experimental methods for studying molecular imprinting. The electric conductivity measurements of the pre-polymerization mixture of amine templates in an aprotic solvent provide evidence of ionic dissociation of the pre-polymerization complexes. The displacement measurement of the template propranolol from its molecularly imprinted polymer (MIP) using a quaternary ammonium ion in toluene, shows that this MIP behaves as an ion exchanger even in a non-polar solvent.
View Article and Find Full Text PDFOne of the main reasons for making molecularly imprinted polymers (MIPs) has been that MIPs interact selectively with a specific target compound. This claim is investigated here with the example of a widely used type of noncovalent MIP, the MIP for the beta blocker propranolol. Adsorption isotherms of this MIP and of a nonimprinted control polymer (NIP), respectively, have been measured with a series of compounds in the porogen solvent acetonitrile.
View Article and Find Full Text PDFWe investigate the single molecule dynamics at the intrinsic liquid/vapor interface of five different molecular liquids (carbon tetrachloride, acetone, acetonitrile, methanol, and water). After assessing that the characteristic residence times in the surface layer are long enough for a meaningful definition of several transport properties within the layer itself, we characterize the dynamics of the individual molecules at the liquid surface by analyzing their normal and lateral mean-square displacements and lateral velocity autocorrelation functions and, in the case of the hydrogen bonding liquids (i.e.
View Article and Find Full Text PDFA simple and efficient method is presented for assessing molecularly imprinted polymers (MIP) and other sorbents from the point of view of practical applications. The adsorption isotherms of the compounds, which need to be separated or detected in an application, are constructed from a small number of measured points on a log-log chart and then are compared graphically. Despite its simplicity and robustness this method reveals the information needed for optimal selection between MIPs and alternative sorbents.
View Article and Find Full Text PDFMolecularly imprinted polymers bind their target compounds at binding sites. The binding sites are typically based on some type of functional group, such as carboxyl group. The total amount of such functional groups and their distribution into available and unavailable groups is not well known.
View Article and Find Full Text PDFUnlabelled: Persistent CB1 cannabinoid receptor activity limits neurotransmitter release at various synapses throughout the brain. However, it is not fully understood how constitutively active CB1 receptors, tonic endocannabinoid signaling, and its regulation by multiple serine hydrolases contribute to the synapse-specific calibration of neurotransmitter release probability. To address this question at perisomatic and dendritic GABAergic synapses in the mouse hippocampus, we used a combination of paired whole-cell patch-clamp recording, liquid chromatography/tandem mass spectrometry, stochastic optical reconstruction microscopy super-resolution imaging, and immunogold electron microscopy.
View Article and Find Full Text PDFDifferent measures of selectivity are in use for single channel and multichannel linear analytical measurements, respectively. It is important to understand that these two measures express related but still distinctly different features of the respective measurements. These relationships are clarified by introducing new arguments.
View Article and Find Full Text PDFSelectivity is extremely important in analytical chemistry but its definition is elusive despite continued efforts by professional organizations and individual scientists. This paper shows that the existing selectivity concepts for univariate analytical methods broadly fall in two classes: selectivity concepts based on measurement error and concepts based on response surfaces (the response surface being the 3D plot of the univariate signal as a function of analyte and interferent concentration, respectively). The strengths and weaknesses of the different definitions are analyzed and contradictions between them unveiled.
View Article and Find Full Text PDFThe percolation temperature of the lateral hydrogen bonding network of the molecules at the free water surface is determined by means of molecular dynamics computer simulation and identification of the truly interfacial molecules analysis for six different water models, including three, four, and five site ones. The results reveal that the lateral percolation temperature coincides with the point where the temperature derivative of the surface tension has a minimum. Hence, the anomalous temperature dependence of the water surface tension is explained by this percolation transition.
View Article and Find Full Text PDFWe investigate the hydrogen bonding percolation threshold of water molecules at the surface of the liquid-vapor interface. We show that the percolation temperature agrees within statistical accuracy with the high-temperature inflection point of the water surface tension. We associate the origin of this surface tension anomaly of water with the sudden breakup of the hydrogen-bonding network in the interfacial molecular layer.
View Article and Find Full Text PDFExtreme halophilic archaea are a yet unexploited source of natural carotenoids. At elevated salinities, however, material corrosivity issues occur and the performance of analytical methods is strongly affected. The goal of this study was to develop a method for identification and downstream processing of potentially valuable bioproducts produced by archaea.
View Article and Find Full Text PDFThe adsorption layer of five different surfactants, namely, pentanol, octanol, dodecanol, dodecyl trimethyl ammonium chloride, and sodium dodecyl sulfate, has been analyzed on the basis of molecular dynamics simulation results at two surface densities, namely, 1 and 4 μmol/m(2). The analyses have primarily focused on the question of how deeply, in terms of atomistic layers, the different surfactant molecules are immersed into the aqueous phase. The orientation and conformation of the surfactant molecules have also been analyzed.
View Article and Find Full Text PDFMost analytical applications of molecularly imprinted polymers are based on their selective adsorption properties towards the template or its analogs. In chromatography, solid phase extraction and electrochromatography this adsorption is a dynamic process. The dynamic process combined with the nonlinear adsorption isotherm of the polymers and other factors results in complications which have limited the success of imprinted polymers.
View Article and Find Full Text PDFMolecular dynamics simulations of the interface of water with four different apolar phases, namely water vapour, liquid carbon tetrachloride, liquid dichloromethane (DCM) and liquid dichloroethane (DCE) are performed on the canonical ensemble at 298 K. The resulting configurations are analysed using the novel method of identification of the truly interfacial molecules (ITIM). Properties of the first three molecular layers of the liquid phases (e.
View Article and Find Full Text PDFThe liquid-vapor interface of dimethyl sulfoxide (DMSO) is investigated by molecular dynamics computer simulation and by the novel method of the identification of the truly interfacial molecules (ITIM). With this method, it is possible to consider in the analysis specifically those molecules that are located right at the boundary of the two phases. The obtained results show that the orientation of the surface molecules is driven by the requirement that these molecules should be able to maintain their strong dipole-dipole and pi-pi interactions with each other, such as in the bulk liquid phase.
View Article and Find Full Text PDFSpherical micron sized terbutylazine imprinted polymers have been obtained by copolymerization of acrylates in solvent mixtures containing a highly viscous ('oil') component. The new method requires much less organic solvent than precipitation polymerization to produce spherical MIP particles. Different proportions of oil have been used to clarify its role on the morphology.
View Article and Find Full Text PDFA novel technique for the synthesis and testing of large numbers of molecularly imprinted polymers is described requiring much less time than the commonly used miniMIP approach. Instead of vials, the polymers are synthesized on the surface of microfiltration membranes in multiwell filterplates. The thin polymeric films enable accelerated template removal.
View Article and Find Full Text PDF