Identifying measures which accurately quantify reactive balance adaptation during walking is essential to understand how emerging perturbation-based gait paradigms impact stability over the course of an intervention. These perturbation paradigms have shown promise in reducing falls for numerous clinical populations, however tracking progress in objective terms throughout an intervention remains challenging. Whole body angular momentum (H) may be particularly suited to detect subtle adaptations in the reactive balance response and is applicable within numerous perturbation environments.
View Article and Find Full Text PDFThe commentary by Dr. Labruyere on the article by Kuo et al. (J Neuroeng Rehabil.
View Article and Find Full Text PDFBackground And Purpose: Gait deviations in individuals after incomplete spinal cord injury (ISCI) that are quantified using spatiotemporal (ST) parameters are often targeted during therapeutic interventions. The purpose of our study was to establish reliability and responsiveness of ST parameters of gait after ISCI using an instrumented walkway (GaitMat II).
Methods: Sixteen individuals with ISCI participated in the study.
The role of the forearm (extrinsic) finger flexor muscles in initiating rotation of the metacarpophalangeal (MCP) joint and in coordinating flexion at the MCP, the proximal interphalangeal (PIP), and distal interphalangeal (DIP) joints remains a matter of some debate. To address the biomechanical feasibility of the extrinsic flexors performing these actions, a computer simulation of the index finger was created. The model consisted of a planar open-link chain comprised of three revolute joints and four links, driven by the change in length of the flexor muscles.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.