Publications by authors named "George H Trksak"

Study Objectives: A principal function of sleep may be restoration of brain energy metabolism caused by the energetic demands of wakefulness. Because energetic demands in the brain are greater in gray than white matter, this study used linear mixed-effects models to examine tissue-type specific changes in high-energy phosphates derived using 31P magnetic resonance spectroscopy (MRS) after sleep deprivation and recovery sleep.

Design: Experimental laboratory study.

View Article and Find Full Text PDF

In cocaine-dependent individuals, sleep is disturbed during cocaine use and abstinence, highlighting the importance of examining the behavioral and homeostatic response to acute sleep loss in these individuals. The current study was designed to identify a differential effect of sleep deprivation on brain bioenergetics, cognitive performance, and sleep between cocaine-dependent and healthy control participants. 14 healthy control and 8 cocaine-dependent participants experienced consecutive nights of baseline, total sleep deprivation, and recovery sleep in the research laboratory.

View Article and Find Full Text PDF

Background And Objectives: We assessed the feasibility of a new cognitive behavioral therapy (CBT) manual, plus transdermal patch nicotine replacement therapy (NRT), to treat co-occurring nicotine and cannabis dependence.

Method: Seven of 12 (58.3%) adults with DSM-IV diagnoses of both nicotine and cannabis dependence completed 10 weeks of individual CBT and NRT.

View Article and Find Full Text PDF

Networks of brain regions having synchronized fluctuations of the blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) time-series at rest, or "resting state networks" (RSNs), are emerging as a basis for understanding intrinsic brain activity. RSNs are topographically consistent with activity-related networks subserving sensory, motor, and cognitive processes, and studying their spontaneous fluctuations following acute drug challenge may provide a way to understand better the neuroanatomical substrates of drug action. The present within-subject double-blind study used BOLD fMRI at 3T to investigate the functional networks influenced by the non-benzodiazepine hypnotic zolpidem (Ambien).

View Article and Find Full Text PDF

Background: Transcutaneous electric acupoint stimulation (TEAS) avoids the use of needles, and instead delivers a mild electric current at traditional acupoints. This technique has been used for treating heroin addiction, but has not been systematically tested for other drugs of abuse. This study aims to investigate the effects of TEAS on drug addiction.

View Article and Find Full Text PDF

Zolpidem is a short-acting imidazopyridine hypnotic that binds at the benzodiazepine binding site on specific GABA(A) receptors to enhance fast inhibitory neurotransmission. The behavioral and receptor pharmacology of zolpidem has been studied extensively, but little is known about its neuronal substrates in vivo. In the present within-subject, double-blind, and placebo-controlled study, blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) at 3 Tesla was used to assess the effects of zolpidem within the brain.

View Article and Find Full Text PDF

The authors measured event-related potentials with a craving manipulation to investigate the neural correlates of drug cue reactivity in 13 adolescents who are cannabis dependent (CD; ages 14-17). The P300 responses to marijuana (MJ) pictures (MJ-P300) and control pictures (C-P300) were assessed after handling neutral objects and again after handling MJ paraphernalia (MJP). Self-reported drug craving and heart rates also were measured.

View Article and Find Full Text PDF

Insomnia afflicts many individuals, but particularly those in chronic methadone treatment. Studies examining sleep deprivation (SD) have begun to identify sleep restoration processes involving brain bioenergetics. The technique ([31])P magnetic resonance spectroscopy (MRS) can measure brain changes in the high-energy phosphates: alpha-, beta-, and gamma-nucleoside triphosphate (NTP).

View Article and Find Full Text PDF

Numerous reports have documented a high occurrence of sleep difficulties in drug-dependent populations, prompting researchers to characterize sleep profiles and physiology in drug abusing populations. This mini-review examines studies indicating that drug-dependent populations exhibit alterations in sleep homeostatic and restoration processes in response to sleep deprivation. Sleep deprivation is a principal sleep research tool that results in marked physiological challenge, which provides a means to examine sleep homeostatic processes in response to extended wakefulness.

View Article and Find Full Text PDF

Water-maze testing has been used to assess prenatal cocaine (PCOC)-induced deficits in behavioral studies of spatial navigation and memory abilities. Effects of PCOC in acquisition or in probe trials over water-maze testing days were rarely detected. Despite an absence of effects of PCOC when data were collapsed over multiple days, there was a potential difference when examined during the first day of acquisition training, characterized by a PCOC-associated decrease in learning efficiency but not capacity.

View Article and Find Full Text PDF

The present study examined the effects of prenatal cocaine (PCOC) exposure, age, sex, and estrous phase on the functional development of nigrostriatal dopamine (DA) neurons. Striatal tissue was obtained from prepubescent and adult rats of both sexes after bidaily exposure to saline (1 ml/kg) or cocaine (20 mg/kg/ml saline) from embryonic days 15-21. Tissue levels, basal release, and electrically evoked (1 or 8 Hz) overflow of endogenous DA and its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), as well as their efflux in response to superfusion with the DA transport blocker, nomifensine (10 microM), were measured from superfused striatal slices.

View Article and Find Full Text PDF

Previous research indicates that prenatal cocaine (pCOC)-exposure results in greater 5-HT3 agonist-induced inhibition of electrically evoked [3H]acetylcholine (ACh) overflow in rat striatal slices. The present study examines the effects of fluoxetine (FLU)-induced and exogenous serotonin (5-HT) on electrically evoked ACh release from striatal slices prepared from adult male and female (in periods of diestrus or proestrus) rats exposed to saline or cocaine in utero. Additionally, we assessed the impact of monoaminergic receptor stimulation on evoked ACh release by superfusion with selective 5-HT2, 5-HT3 and D2 receptor antagonists in the presence of FLU-induced and exogenous 5-HT and measuring the capacity of these drugs to reverse inhibitory effects of 5-HT.

View Article and Find Full Text PDF