Publications by authors named "George G Kuiper"

Type I iodothyronine deiodinase (D1) and type II iodothyronine deiodinase (D2) catalyze the activation of the prohormone T4 to the active hormone T3; type III iodothyronine deiodinase (D3) catalyzes the inactivation of T4 and T3. D3 is highly expressed in brain, placenta, pregnant uterus, and fetal tissues and plays an important role in regulating thyroid hormone bioavailability during fetal development. We examined the activity of the different deiodinases in human cell lines and investigated the regulation of D3 activity and mRNA expression in these cell lines, as well as its possible coexpression with neighboring genes Dlk1 and Dio3os, which may also be especially important during development.

View Article and Find Full Text PDF

Cellular entry of thyroid hormone is mediated by plasma membrane transporters. We have identified rat monocarboxylate transporter 8 (MCT8) as an active and specific thyroid hormone transporter. The MCT8 gene is located on the X-chromosome.

View Article and Find Full Text PDF

Thyroid hormones orchestrate amphibian metamorphosis. The type 2 and type 3 deiodinases make vital contributions to this process by controlling levels of the thyroid hormones T(4) and T(3) available to different tissues. Because the tadpole thyroid gland is not functional until stage NF44, it has been widely assumed that thyroid signaling is absent during amphibian early development, thyroid hormone only becoming a major regulator during premetamorphic stages.

View Article and Find Full Text PDF

In frogs such as Rana and Xenopus, metamorphosis does not occur in the absence of a functional thyroid gland. Previous studies indicated that coordinated development in frogs requires tissue and stage-dependent type II and type III iodothyronine deiodinase expression patterns to obtain requisite levels of intracellular T(3) in tissues at the appropriate stages of metamorphosis. No type I iodothyronine deiodinase (D1), defined as T(4) or reverse T(3) (rT3) outer-ring deiodinase (ORD) activity with Michaelis constant (K(m)) values in the micromolar range and sensitivity to 6-propyl-2-thiouracil (6-PTU), could be detected in tadpoles so far.

View Article and Find Full Text PDF

Objective: An increasing number of proteins appear to be involved in thyroid hormone feedback action at the level of the anterior pituitary, but the cell types expressing these proteins are largely unknown. The aim of the present study was to identify cell types in the human anterior pituitary that express type II and type III deiodinase (D2 and D3), the recently described thyroid hormone transporter (MCT8) and thyroid hormone receptor (TR) isoforms by means of double-labeling immunocytochemistry.

Results: We found TR isoforms to be expressed most prominently in gonadotropes and - although to a lesser extent - in thyrotropes, corticotropes, lactotropes and somatotropes.

View Article and Find Full Text PDF

Deiodination is the foremost pathway of thyroid hormone metabolism not only in quantitative terms but also because thyroxine (T(4)) is activated by outer ring deiodination (ORD) to 3,3',5-triiodothyronine (T(3)), whereas both T(4) and T(3) are inactivated by inner ring deiodination (IRD) to 3,3',5-triiodothyronine and 3,3'-diiodothyronine, respectively. These reactions are catalyzed by three iodothyronine deiodinases, D1-3. Although they are homologous selenoproteins, they differ in important respects such as catalysis of ORD and/or IRD, deiodination of sulfated iodothyronines, inhibition by the thyrostatic drug propylthiouracil, and regulation during fetal and neonatal development, by thyroid state, and during illness.

View Article and Find Full Text PDF

The bioactivity of thyroid hormone is determined to a large extent by the monodeiodination of the prohormone thyroxine (T4) by the hepatic selenoenzyme type I iodothyronine deiodinase (D1), i.e. by outer ring deiodination (ORD) to the active hormone triiodothyronine (T3) or by inner ring deiodination (IRD) to the inactive metabolite reverse T3 (rT3).

View Article and Find Full Text PDF

Context: Recent findings point to an increasing number of hypothalamic proteins involved in the central regulation of thyroid hormone feedback. The functional neuroanatomy of these proteins in the human hypothalamus is largely unknown at present.

Objective: The aim of this study was to report the distribution of type II and type III deiodinase (D2 and D3) as well as the recently identified T(3) transporter, monocarboxylate transporter 8 (MCT8), in the human hypothalamus.

View Article and Find Full Text PDF

Type II deiodinase (D2) is important in the regulation of local thyroid hormone bioactivity in certain tissues. D2 in skeletal muscle may also play a role in serum triiodothyronine (T(3)) production. In this study, we identified a polymorphism in the 5'-UTR of the D2 gene (D2-ORFa-Gly3Asp).

View Article and Find Full Text PDF

Monocarboxylate transporter 8 (MCT8) is a thyroid hormone transporter, the gene of which is located on the X chromosome. We tested whether mutations in MCT8 cause severe psychomotor retardation and high serum triiodothyronine (T3) concentrations in five unrelated young boys. The coding sequence of MCT8 was analysed by PCR and direct sequencing of its six exons.

View Article and Find Full Text PDF

Three iodothyronine deiodinases (D1, D2, and D3) regulate local and systemic availability of thyroid hormone. D1 and D2 activate the prohormone T4 to the thyromimetic T3, and D3 inactivates T4 and T3 to rT3 and 3,3'-diiodothyronine, respectively. The expression of the three deiodinases is tightly regulated with regard to developmental stage and cell type to provide fine tuning of T3 supply to target cells.

View Article and Find Full Text PDF

In all classes of vertebrates, the deiodination of the prohormone T(4) to T(3) represents an essential activation step in thyroid hormone action. The possible presence of iodothyronine deiodinase activity in protochordates has been demonstrated in vivo. Recent molecular cloning of the genomes and transcripts of several ascidian species allows further investigation into thyroid-related processes in ascidians.

View Article and Find Full Text PDF

The type I iodothyronine deiodinase (D1) catalyzes the activation of T4 to T3 as well as the degradation of T3 (rT3) and sulfated iodothyronines. A comparison of the catalytic activities of D1 in liver microsomal preparations from several species revealed a remarkable difference between cat D1 on one hand and rat/human D1 on the other hand. The Michaelis constant (Km) of cat D1 for rT3 (11 microm) is 30-fold higher than that of rat and human D1 (0.

View Article and Find Full Text PDF

Single nucleotide polymorphisms (SNPs) in genes involved in thyroid hormone metabolism may affect thyroid hormone bioactivity. We investigated the occurrence and possible effects of SNPs in the deiodinases (D1-D3), the TSH receptor (TSHR), and the T(3) receptor beta (TR beta) genes. SNPs were identified in public databases or by sequencing of genomic DNA from 15 randomly selected subjects (30 alleles).

View Article and Find Full Text PDF

Human type III iodothyronine deiodinase (D3) catalyzes the conversion of T(4) to rT(3) and of T(3) to 3, 3'-diiodothyronine (T2) by inner-ring deiodination. Like types I and II iodothyronine deiodinases, D3 protein contains selenocysteine (SeC) in the highly conserved core catalytic center at amino acid position 144. To evaluate the contribution of SeC144 to the catalytic properties of D3 enzyme, we generated mutants in which cysteine (D3Cys) or alanine (D3Ala) replaces SeC144 (D3wt).

View Article and Find Full Text PDF

The similarities between the changes in cardiac gene expression in pathological ventricular hypertrophy and hypothyroidism suggest a role of impaired cardiac thyroid hormone (TH) action in the development of contractile dysfunction during chronic cardiac pressure overload. Here we studied the possible involvement of altered cardiac TH metabolism using a rat model of right-ventricular (RV) hypertrophy induced by pressure-overload. Pathological RV hypertrophy was indicated by decreased mRNA levels of sarcoplasmic reticulum(SR) Ca2-ATPase type 2a (SERCA2a) and myosin heavy chain a (MHCalpha), and increased levels of MHCbeta mRNA.

View Article and Find Full Text PDF

Unlabelled: Human type II iodothyronine deiodinase (D2) catalyzes the activation of T(4) to T(3). The D2 enzyme, like the type I (D1) and type III (D3) deiodinases, contains a selenocysteine (SeC) residue (residue 133 in D2) in the highly conserved catalytic center. Remarkably, all of the D2 proteins cloned so far have an alanine two residue-amino terminal to the SeC, whereas all D1 and D3 proteins contain a cysteine at this position.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionfm0u1bpi8revuk06mc58qlol7bisn3v8): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once