J Phys Chem C Nanomater Interfaces
October 2023
A fundamental understanding of the electrochemical reactions and surface chemistry at the solid-gas interface and is critical for electrode materials applied in electrochemical and catalytic applications. Here, the surface reactions and surface composition of a model of mixed ionic and electronic conducting (MIEC) perovskite oxide, (LaSr)CrFeO (LSCrF8255), were investigated using synchrotron-based near-ambient pressure (AP) X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine-structure spectroscopy (NEXAFS). The measurements were conducted with a surface temperature of 500 °C under 1 mbar of dry oxygen and water vapor, to reflect the implementation of the materials for oxygen reduction/evolution and HO electrolysis in the applications such as solid oxide fuel cell (SOFC) and electrolyzers.
View Article and Find Full Text PDFThe oxygen exchange kinetics of epitaxial PrCeO electrodes was modified by decoration with submonolayer amounts of different basic (SrO, CaO) and acidic (SnO, TiO) binary oxides. The oxygen exchange reaction (OER) rate and the total conductivity were measured by PLD impedance spectroscopy (-PLD), which allows to directly track changes of electrochemical properties after each deposited pulse of surface decoration. The surface chemistry of the electrodes was investigated by near-ambient pressure XPS measurements (NAP-XPS) at elevated temperatures and by low-energy ion scattering (LEIS).
View Article and Find Full Text PDFThe effects of sulphur adsorbates and other typical solid oxide fuel cell (SOFC) poisons on the electronic and ionic properties of an SrO-terminated (La,Sr)CoO (LSC) surface and on its oxygen exchange kinetics have been investigated experimentally with near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS), low energy ion scattering (LEIS) and impedance spectroscopy as well as computationally with density functional theory (DFT). The experiment shows that trace amounts of sulphur in measurement atmospheres form SO adsorbates and strongly deactivate a pristine LSC surface. They induce a work function increase, indicating a changing surface potential and a surface dipole.
View Article and Find Full Text PDFChemical looping processes based on multiple-step reduction and oxidation of metal oxides hold great promise for a variety of energy applications, such as CO capture and conversion, gas separation, energy storage, and redox catalytic processes. Copper-based mixed oxides are one of the most promising candidate materials with a high oxygen storage capacity. However, the structural deterioration and sintering at high temperatures is one key scientific challenge.
View Article and Find Full Text PDFExsolution of stable metallic nanoparticles for use as efficient electrocatalysts has been of increasing interest for a range of energy technologies. Typically, exsolved nanoparticles show higher thermal and coarsening stability compared to conventionally deposited catalysts. Here, A-site deficient double perovskite oxides, La NiRuO (x = 0.
View Article and Find Full Text PDF