Publications by authors named "George E Sakr"

The superimposition of sequential radiographs of the head is commonly used to determine the amount and direction of orthodontic tooth movement. A harmless method includes the timely unlimited superimposition on the relatively stable palatal rugae, but the method is performed manually and, if automated, relies on the best fit of surfaces, not only rugal structures. In the first step, motion estimation requires segmenting and detecting the location of teeth and rugae at any time during the orthodontic intervention.

View Article and Find Full Text PDF

Shortly after deep learning algorithms were applied to Image Analysis, and more importantly to medical imaging, their applications increased significantly to become a trend. Likewise, deep learning applications (DL) on pulmonary medical images emerged to achieve remarkable advances leading to promising clinical trials. Yet, coronavirus can be the real trigger to open the route for fast integration of DL in hospitals and medical centers.

View Article and Find Full Text PDF

Background: Coronary artery disease (CAD) accounts for more than half of all cardiovascular events. Stress testing remains the cornerstone for non-invasive assessment of patients with possible or known CAD. Clinical utilization reviews show that most patients presenting for evaluation of stable CAD by stress testing are categorized as low risk prior to the test.

View Article and Find Full Text PDF

Despite uncertain yield, guidelines endorse routine stress myocardial perfusion imaging (MPI) for patients with suspected acute coronary syndromes, unremarkable serial electrocardiograms, and negative troponin measurements. In these patients, outcome prediction and risk stratification models could spare unnecessary testing. This study therefore investigated the use of artificial neural networks (ANN) to improve risk stratification and prediction of MPI and angiographic results.

View Article and Find Full Text PDF

Background: High dietary salt intake is directly linked to hypertension and cardiovascular diseases (CVDs). Predicting behaviors regarding salt intake habits is vital to guide interventions and increase their effectiveness. We aim to compare the accuracy of an artificial neural network (ANN) based tool that predicts behavior from key knowledge questions along with clinical data in a high cardiovascular risk cohort relative to the least square models (LSM) method.

View Article and Find Full Text PDF

Background: The unpredictability of acenocoumarol dose needed to achieve target blood thinning level remains a challenge. We aimed to apply and compare a pharmacogenetic least-squares model (LSM) and artificial neural network (ANN) models for predictions of acenocoumarol dosing.

Methods: LSM and ANN models were used to analyze previously collected data on 174 participants (mean age: 67.

View Article and Find Full Text PDF