Publications by authors named "George E Kapellos"

Multifaceted interactions between marine bacteria and particulate matter exert a major control over the biogeochemical cycles in the oceans. At the microbial scale, free-living bacteria benefit from encountering and harnessing the plumes around nutrient-releasing particles, like phyto-plankton and organic aggregates. However, our understanding of the bacterial potential to reshape these eutrophic microhabitats remains poor, in part because of the traditional focus on fast-moving particles that generate ephemeral plumes with lifetime shorter than the uptake timescale.

View Article and Find Full Text PDF

The interactions between marine bacteria and particulate matter play a pivotal role in the biogeochemical cycles of carbon and associated inorganic elements in the oceans. Eutrophic plumes typically form around nutrient-releasing particles and host intense bacterial activities. However, the potential of bacteria to reshape the nutrient plumes remains largely unexplored.

View Article and Find Full Text PDF

In the aftermath of oil spills in the sea, clouds of droplets drift into the seawater column and are carried away by sea currents. The fate of the drifting droplets is determined by natural attenuation processes, mainly dissolution into the seawater and biodegradation by oil-degrading microbial communities. Specifically, microbes have developed three fundamental strategies for accessing and assimilating oily substrates.

View Article and Find Full Text PDF

Fluid-structure interactions strongly affect, in multiple ways, the structure and function of cellular biological media, such as tissues, biofilms, and cell-entrapping gels. Mathematical models and computer simulation are important tools in advancing our understanding of these interactions, interpreting experimental observations, and designing novel processes and biomaterials. In this paper, we present a comprehensive survey and highlight promising directions of future research on theoretical modeling of momentum transport in cellular biological media with focus on the formulation of governing equations and the calculation of material properties both theoretically and experimentally.

View Article and Find Full Text PDF

An integrated methodology is developed for the theoretical analysis of solute transport and reaction in cellular biological media, such as tissues, microbial flocs, and biofilms. First, the method of local spatial averaging with a weight function is used to establish the equation which describes solute conservation at the cellular biological medium scale, starting with a continuum-based formulation of solute transport at finer spatial scales. Second, an effective-medium model is developed for the self-consistent calculation of the local diffusion coefficient in the cellular biological medium, including the effects of the structural heterogeneity of the extra-cellular space and the reversible adsorption to extra-cellular polymers.

View Article and Find Full Text PDF