Publications by authors named "George E Christidis"

The experiments presented here are based on the reconfiguration of an ancient medicine, Lemnian Earth (LE) (terra sigillata, stamped earth, sphragis), an acclaimed therapeutic clay with a 2500-year history of use. Based on our hypothesis that LE was not a natural material but an artificially modified one involving a clay-fungus interaction, we present results from experiments involving the co-culture of a common fungus, Penicillium purpurogenum (Pp), with two separate clay slurries, smectite and kaolin, which are the principal constituents of LE. Our results show: (a) the leachate of the Pp+smectite co-culture is antibacterial in vitro, inhibiting the growth of both Gram-positive and Gram-negative bacteria; (b) in vivo, supplementation of regular mouse diet with leachates of Pp+smectite increases intestinal microbial diversity; (c) Pp+kaolin does not produce similar results; (d) untargeted metabolomics and analysis of bacterial functional pathways indicates that the Pp+smectite-induced microbiome amplifies production of short-chain fatty acids (SCFAs) and amino acid biosynthesis, known to modulate intestinal and systemic inflammation.

View Article and Find Full Text PDF

Medicinal earths are an important and yet, so far, little scientifically explored archaeological resource. They are almost always identified by their source locality. Our work over the last few years has focused on their chemical and mineralogical characterization and their testing as anti-bacterials.

View Article and Find Full Text PDF

The combination of intense solar radiation and soil desiccation creates a short circuit in the biogeochemical carbon cycle, where soils release significant amounts of CO2 and reactive nitrogen oxides by abiotic oxidation. Here we show that desert soils accumulate metal superoxides and peroxides at higher levels than non-desert soils. We also show the photogeneration of equimolar superoxide and hydroxyl radical in desiccated and aqueous soils, respectively, by a photo-induced electron transfer mechanism supported by their mineralogical composition.

View Article and Find Full Text PDF