High-resolution fluorescence microscopy approaches enable the study of single objects or biological complexes. Single object studies have the general advantage of uncovering heterogeneity that may be hidden during the ensemble averaging which is common in any bulk conventional biochemical analysis. The implementation of single object analysis in the study of extracellular vesicles (EVs) may therefore be used to characterize specific properties of vesicle subsets which would be otherwise undetectable.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are released by mammalian cells and are thought to be important mediators of intercellular communication. There are many methods for isolating EVs from cell culture media, but the most popular methods involve purification based on ultracentrifugation . Here, we provide a detailed protocol for isolating EVs by differential ultracentrifugation and analyzing EV proteins (such as the tetraspanins CD9 , CD63 and CD81 ) by western blotting.
View Article and Find Full Text PDFXenotransplantation is a promising strategy to alleviate the shortage of organs for human transplantation. In addition to the concerns about pig-to-human immunological compatibility, the risk of cross-species transmission of porcine endogenous retroviruses (PERVs) has impeded the clinical application of this approach. We previously demonstrated the feasibility of inactivating PERV activity in an immortalized pig cell line.
View Article and Find Full Text PDFWe systematically analyzed postzygotic mutations (PZMs) in whole-exome sequences from the largest collection of trios (5,947) with autism spectrum disorder (ASD) available, including 282 unpublished trios, and performed resequencing using multiple independent technologies. We identified 7.5% of de novo mutations as PZMs, 83.
View Article and Find Full Text PDFReconstituted cell-free protein synthesis systems such as the Protein synthesis Using Recombinant Elements (PURE) system give high-throughput and controlled access to protein synthesis. Here we show that compared with the commercial S30 crude extract based RTS 100 HY system, the PURE system has less mRNA degradation and produces up to ∼6-fold full-length proteins. However the majority of polypeptides PURE produces are partially translated or inactive since the signal from firefly luciferase (Fluc) translated in PURE is only ∼2/3 of that measured using the RTS 100 HY S30 system.
View Article and Find Full Text PDFDNA is an excellent medium for archiving data. Recent efforts have illustrated the potential for information storage in DNA using synthesized oligonucleotides assembled in vitro. A relatively unexplored avenue of information storage in DNA is the ability to write information into the genome of a living cell by the addition of nucleotides over time.
View Article and Find Full Text PDFThe ability to replace organs and tissues on demand could save or improve millions of lives each year globally and create public health benefits on par with curing cancer. Unmet needs for organ and tissue preservation place enormous logistical limitations on transplantation, regenerative medicine, drug discovery, and a variety of rapidly advancing areas spanning biomedicine. A growing coalition of researchers, clinicians, advocacy organizations, academic institutions, and other stakeholders has assembled to address the unmet need for preservation advances, outlining remaining challenges and identifying areas of underinvestment and untapped opportunities.
View Article and Find Full Text PDFElectrowetting-on-dielectric (EWD) digital microfluidic laboratory-on-a-chip platforms demonstrate excellent performance in automating labor-intensive protocols. When coupled with an on-chip electroporation capability, these systems hold promise for streamlining cumbersome processes such as multiplex automated genome engineering (MAGE). We integrated a single Ti:Au electroporation electrode into an otherwise standard parallel-plate EWD geometry to enable high-efficiency transformation of Escherichia coli with reporter plasmid DNA in a 200 nL droplet.
View Article and Find Full Text PDFInexpensive DNA sequencing and advances in genome editing have made computational analysis a major rate-limiting step in adaptive laboratory evolution and microbial genome engineering. We describe Millstone, a web-based platform that automates genotype comparison and visualization for projects with up to hundreds of genomic samples. To enable iterative genome engineering, Millstone allows users to design oligonucleotide libraries and create successive versions of reference genomes.
View Article and Find Full Text PDFWe present a method for identifying genomic modifications that optimize a complex phenotype through multiplex genome engineering and predictive modeling. We apply our method to identify six single nucleotide mutations that recover 59% of the fitness defect exhibited by the 63-codon E. coli strain C321.
View Article and Find Full Text PDFThe advent of next-generation sequencing has dramatically decreased the cost for whole-genome sequencing and increased the viability for its application in research and clinical care. The Personal Genome Project (PGP) provides unrestricted access to genomes of individuals and their associated phenotypes. This resource enabled the Critical Assessment of Genome Interpretation (CAGI) to create a community challenge to assess the bioinformatics community's ability to predict traits from whole genomes.
View Article and Find Full Text PDFThe "14-day rule" for embryo research stipulates that experiments with intact human embryos must not allow them to develop beyond 14 days or the appearance of the primitive streak. However, recent experiments showing that suitably cultured human pluripotent stem cells can self-organize and recapitulate embryonic features have highlighted difficulties with the 14-day rule and led to calls for its reassessment. Here we argue that these and related experiments raise more foundational issues that cannot be fixed by adjusting the 14-day rule, because the framework underlying the rule cannot adequately describe the ways by which synthetic human entities with embryo-like features (SHEEFs) might develop morally concerning features through altered forms of development.
View Article and Find Full Text PDFUsing a DNA polymerase to record intracellular calcium levels has been proposed as a novel neural recording technique, promising massive-scale, single-cell resolution monitoring of large portions of the brain. This technique relies on local storage of neural activity in strands of DNA, followed by offline analysis of that DNA. In simple implementations of this scheme, the time when each nucleotide was written cannot be determined directly by post-hoc DNA sequencing; the timing data must be estimated instead.
View Article and Find Full Text PDFThe alteration of wild populations has been discussed as a solution to a number of humanity's most pressing ecological and public health concerns. Enabled by the recent revolution in genome editing, clustered regularly interspaced short palindromic repeats (CRISPR) gene drives-selfish genetic elements that can spread through populations even if they confer no advantage to their host organism-are rapidly emerging as the most promising approach. However, before real-world applications are considered, it is imperative to develop a clear understanding of the outcomes of drive release in nature.
View Article and Find Full Text PDFThe Personal Genome Project (PGP) is an effort to enroll many participants to create an open-access repository of genome, health and trait data for research. However, PGP participants are not enrolled for studying any specific traits and participants choose the phenotypes to disclose. To measure the extent and willingness and to encourage and guide participants to contribute phenotypes, we developed an algorithm to score and rank the phenotypes and participants of the PGP.
View Article and Find Full Text PDFTo build replicating systems with new functions, the engineering of existing biological machineries requires a sensible strategy. Protein synthesis Using Recombinant Elements (PURE) system consists of the desired components for transcription, translation, aminoacylation and energy regeneration. PURE might be the basis for a radically alterable, lifelike system after optimization.
View Article and Find Full Text PDFThe development of new drug regimens that allow rapid, sterilizing treatment of tuberculosis has been limited by the complexity and time required for genetic manipulations in Mycobacterium tuberculosis. CRISPR interference (CRISPRi) promises to be a robust, easily engineered and scalable platform for regulated gene silencing. However, in M.
View Article and Find Full Text PDFIt has been possible to create tools to predict single guide RNA (sgRNA) activity in the CRISPR/Cas9 system derived from Streptococcus pyogenes due to the large amount of data that has been generated in sgRNA library screens. However, with the discovery of additional CRISPR systems from different bacteria, which show potent activity in eukaryotic cells, the approach of generating large data sets for each of these systems to predict their activity is not tractable. Here, we present a new guide RNA tool that can predict sgRNA activity across multiple CRISPR systems.
View Article and Find Full Text PDFThe PKA hotspot mutation has been implicated in Cushing's syndrome through hyperactive gain-of-function PKA signaling; however, its influence on substrate specificity has not been investigated. Here, we employ the Proteomic Peptide Library (ProPeL) approach to create high-resolution models for PKA and PKA substrate specificity. We reveal that the L205R mutation reduces canonical hydrophobic preference at the substrate P + 1 position, and increases acidic preference in downstream positions.
View Article and Find Full Text PDFGenome editing of human induced pluripotent stem cells (hiPSCs) offers unprecedented opportunities for in vitro disease modeling and personalized cell replacement therapy. The introduction of Cas9-directed genome editing has expanded adoption of this approach. However, marker-free genome editing using standard protocols remains inefficient, yielding desired targeted alleles at a rate of ∼1-5%.
View Article and Find Full Text PDFWe present an approach for engineering evolving DNA barcodes in living cells. A homing guide RNA (hgRNA) scaffold directs the Cas9-hgRNA complex to the DNA locus of the hgRNA itself. We show that this homing CRISPR-Cas9 system acts as an expressed genetic barcode that diversifies its sequence and that the rate of diversification can be controlled in cultured cells.
View Article and Find Full Text PDFHuman genomes are routinely compared against a universal reference. However, this strategy could miss population-specific and personal genomic variations, which may be detected more efficiently using an ethnically relevant or personal reference. Here we report a hybrid assembly of a Korean reference genome (KOREF) for constructing personal and ethnic references by combining sequencing and mapping methods.
View Article and Find Full Text PDFPrecise editing is essential for biomedical research and gene therapy. Yet, homology-directed genome modification is limited by the requirements for genomic lesions, homology donors and the endogenous DNA repair machinery. Here we engineered programmable cytidine deaminases and test if we could introduce site-specific cytidine to thymidine transitions in the absence of targeted genomic lesions.
View Article and Find Full Text PDFScalable, high-throughput DNA sequencing is a prerequisite for precision medicine and biomedical research. Recently, we presented a nanopore-based sequencing-by-synthesis (Nanopore-SBS) approach, which used a set of nucleotides with polymer tags that allow discrimination of the nucleotides in a biological nanopore. Here, we designed and covalently coupled a DNA polymerase to an α-hemolysin (αHL) heptamer using the SpyCatcher/SpyTag conjugation approach.
View Article and Find Full Text PDF