Publications by authors named "George Church"

Viral infections leading to inflammation have been implicated in several common diseases, such as Alzheimer's disease (AD) and type 1 diabetes (T1D). Of note, herpes simplex virus 1 (HSV-1) has been reported to be associated with AD. We sought to identify the transcriptomic changes due to HSV-1 infection and anti-viral drug (acyclovir, ACV) treatment of HSV-1 infection in dissociated cells from human cerebral organoids (dcOrgs) versus stem cell-derived pancreatic islets (sc-islets) to gain potential biological insights into the relevance of HSV-1-induced inflammation in AD and T1D.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how cancer cells influence the fitness of surrounding tumor microenvironment (TME) cells through a mechanism involving a long non-coding RNA called Tu-Stroma, which alters the expression of Flower isoforms, impacting their growth advantage.
  • The expression of Flower Win isoforms in cancer cells enhances their dominance over TME cells that express Flower Lose isoforms, leading to reduced fitness in the TME.
  • Targeting Flower proteins with a humanized monoclonal antibody in mice has shown promising results, significantly reducing cancer growth and metastasis while improving survival rates and protecting organs from potential lesions.
View Article and Find Full Text PDF

Cancer metastasis is a major contributor to patient morbidity and mortality, yet the factors that determine the organs where cancers can metastasize are incompletely understood. In this study, we quantify the absolute levels of over 100 nutrients available across multiple tissues in mice and investigate how this relates to the ability of breast cancer cells to grow in different organs. We engineered breast cancer cells with broad metastatic potential to be auxotrophic for specific nutrients and assessed their ability to colonize different organs.

View Article and Find Full Text PDF

Temporal ordering of cellular events offers fundamental insights into biological phenomena. Although this is traditionally achieved through continuous direct observations, an alternative solution leverages irreversible genetic changes, such as naturally occurring mutations, to create indelible marks that enables retrospective temporal ordering. Using a multipurpose, single-cell CRISPR platform, we developed a molecular clock approach to record the timing of cellular events and clonality in vivo, with incorporation of cell state and lineage information.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are released by all cells and hold great promise as a class of biomarkers. This promise has led to increased interest in measuring EV proteins from both total EVs as well as brain-derived EVs in plasma. However, measuring cargo proteins in EVs has been challenging because EVs are present at low levels, and EV isolation methods are imperfect at separating EVs from free proteins.

View Article and Find Full Text PDF

Unlabelled: Cyanobacteria are photosynthetic organisms that play important roles in carbon cycling and are promising bioproduction chassis. Here, we isolate two novel cyanobacteria with 4.6Mbp genomes, UTEX 3221 and UTEX 3222, from a unique marine environment with naturally elevated CO₂.

View Article and Find Full Text PDF
Article Synopsis
  • Microscopy and genomics both help in studying cell functions, but they struggle to connect insights at a detailed level within the cell nucleus.
  • A new technology called expansion in situ genome sequencing (ExIGS) allows for detailed sequencing of genomic DNA and precise localization of nuclear proteins in single cells.
  • Using ExIGS on fibroblast cells from a person with Hutchinson-Gilford progeria syndrome revealed that abnormalities in a protein called lamin are linked to unusual chromatin organization, potentially destabilizing cell identity and altering gene regulation in various diseases.
View Article and Find Full Text PDF
Article Synopsis
  • Wastewater can help scientists understand public health by showing how germs and viruses are present in communities over time and space.
  • Researchers studied wastewater in Miami Dade County from 2020 to 2022 to track different viruses and bacteria, linking them to COVID-19 cases in hospitals and universities.
  • They found harmful germs and bacteria in the water, showing connections between wastewater, human health, and the use of antibiotics, which can help improve public health decisions in the future.
View Article and Find Full Text PDF

When faced with the prospect of death, some people would prefer a form of long-term preservation that may allow them to be restored to healthy life in the future, if technology ever develops to the point that this is feasible and humane. Some believe that we may have the capacity to perform this type of experimental preservation today-although it has never been proven-using contemporary methods to preserve the structure of the brain. The idea is that the morphomolecular organization of the brain encodes the information required for psychological properties such as personality and long-term memories.

View Article and Find Full Text PDF
Article Synopsis
  • Globally, while people are living longer, many experience a decline in health due to age-related diseases, highlighting the need for better classification systems to address these issues.
  • A consensus meeting with 150 experts established criteria for identifying ageing-related pathologies, requiring a 70% agreement for approval among participants.
  • The agreed criteria focus on conditions that progress with age, contribute to functional decline, and are backed by human studies, setting a foundation for future classification and staging efforts.
View Article and Find Full Text PDF

Over the last decade, advances in genome editing and pluripotent stem cell (PSC) culture have let researchers generate edited PSC lines to study a wide variety of biological questions. However, abnormalities in cell lines such as aneuploidy, mutations, on-target and off-target editing errors, and microbial contamination can arise during PSC culture or due to undesired editing outcomes. The ongoing decline of next-generation sequencing prices has made whole-genome sequencing (WGS) a promising option for detecting these abnormalities.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a new platform that enhances the discovery of optical biosensors, enabling faster and more efficient development through genetically encodable fluorogenic amino acids (FgAAs).
  • The engineered nanosensors can detect specific proteins and small molecules with significant increases in fluorescence and fast response times, which are beneficial for real-time diagnostics and live-cell imaging.
  • This advanced system allows for rapid testing of numerous sensor candidates, improving sensitivity for detecting SARS-CoV-2 antigens and has the potential for broader applications in modifying proteins with unique functionalities.
View Article and Find Full Text PDF

KRAS mutations in pancreatic ductal adenocarcinoma (PDAC) are suggested to vary in oncogenicity but the implications for human patients have not been explored in depth. We examined 1,360 consecutive PDAC patients undergoing surgical resection and find that KRAS mutations are enriched in early-stage (stage I) disease, owing not to smaller tumor size but increased node-negativity. KRAS tumors are associated with decreased distant recurrence and improved survival as compared to KRAS.

View Article and Find Full Text PDF

Multicellular organisms originate from a single cell, ultimately giving rise to mature organisms of heterogeneous cell type composition in complex structures. Recent work in the areas of stem cell biology and tissue engineering has laid major groundwork in the ability to convert certain types of cells into other types, but there has been limited progress in the ability to control the morphology of cellular masses as they grow. Contemporary approaches to this problem have included the use of artificial scaffolds, 3D bioprinting, and complex media formulations; however, there are no existing approaches to controlling this process purely through genetics and from a single-cell starting point.

View Article and Find Full Text PDF

CRISPR-Cas genome editing is transformative; however, there is no simple tool available for determining the optimal genome editing technology to create specific mutations for experimentation or to correct mutations as a curative therapy for specific diseases. We developed editABLE, an online resource (editable-app.stanford.

View Article and Find Full Text PDF

Acne vulgaris, rosacea, and hidradenitis suppurativa are enduring inflammatory skin conditions that frequently manifest with akin clinical attributes, posing a considerable challenge for their distinctive diagnosis. While these conditions do exhibit certain resemblances, they also demonstrate distinct underlying pathophysiological mechanisms and treatment modalities. Delving into both the molecular parallels and disparities among these three disorders can yield invaluable insights for refined diagnostics, effective management, and targeted therapeutic interventions.

View Article and Find Full Text PDF

Common and rare alleles are now being annotated across millions of human genomes, and omics technologies are increasingly being used to develop health and treatment recommendations. However, these alleles have not yet been systematically characterized relative to aerospace medicine. Here, we review published alleles naturally found in human cohorts that have a likely protective effect, which is linked to decreased cancer risk and improved bone, muscular, and cardiovascular health.

View Article and Find Full Text PDF

RNA oligonucleotides have emerged as a powerful therapeutic modality to treat disease, yet current manufacturing methods may not be able to deliver on anticipated future demand. Here, we report the development and optimization of an aqueous-based, template-independent enzymatic RNA oligonucleotide synthesis platform as an alternative to traditional chemical methods. The enzymatic synthesis of RNA oligonucleotides is made possible by controlled incorporation of reversible terminator nucleotides with a common 3'-O-allyl ether blocking group using new CID1 poly(U) polymerase mutant variants.

View Article and Find Full Text PDF

Antibodies have long served as vital tools in biological and clinical laboratories for the specific detection of proteins. Conventional methods employ fluorophore or horseradish peroxidase-conjugated antibodies to detect signals. More recently, DNA-conjugated antibodies have emerged as a promising technology, capitalizing on the programmability and amplification capabilities of DNA to enable highly multiplexed and ultrasensitive protein detection.

View Article and Find Full Text PDF

Engineering the genetic code of an organism provides the basis for (i) making any organism safely resistant to natural viruses and (ii) preventing genetic information flow into and out of genetically modified organisms while (iii) allowing the biosynthesis of genetically encoded unnatural polymers. Achieving these three goals requires the reassignment of multiple of the 64 codons nature uses to encode proteins. However, synonymous codon replacement-recoding-is frequently lethal, and how recoding impacts fitness remains poorly explored.

View Article and Find Full Text PDF

Maintenance of astronaut health during spaceflight will require monitoring and potentially modulating their microbiomes. However, documenting microbial shifts during spaceflight has been difficult due to mission constraints that lead to limited sampling and profiling. Here we executed a six-month longitudinal study to quantify the high-resolution human microbiome response to three days in orbit for four individuals.

View Article and Find Full Text PDF

Spaceflight can change metabolic, immunological, and biological homeostasis and cause skin rashes and irritation, yet the molecular basis remains unclear. To investigate the impact of short-duration spaceflight on the skin, we conducted skin biopsies on the Inspiration4 crew members before (L-44) and after (R + 1) flight. Leveraging multi-omics assays including GeoMx™ Digital Spatial Profiler, single-cell RNA/ATAC-seq, and metagenomics/metatranscriptomics, we assessed spatial gene expressions and associated microbial and immune changes across 95 skin regions in four compartments: outer epidermis, inner epidermis, outer dermis, and vasculature.

View Article and Find Full Text PDF

Spaceflight induces molecular, cellular and physiological shifts in astronauts and poses myriad biomedical challenges to the human body, which are becoming increasingly relevant as more humans venture into space. Yet current frameworks for aerospace medicine are nascent and lag far behind advancements in precision medicine on Earth, underscoring the need for rapid development of space medicine databases, tools and protocols. Here we present the Space Omics and Medical Atlas (SOMA), an integrated data and sample repository for clinical, cellular and multi-omic research profiles from a diverse range of missions, including the NASA Twins Study, JAXA CFE study, SpaceX Inspiration4 crew, Axiom and Polaris.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: