The collective statistics of voting on judicial courts present hints about their inner workings. Many approaches for studying these statistics, however, assume that judges' decisions are conditionally independent: a judge reaches a decision based on the case at hand and his or her personal views. In reality, judges interact.
View Article and Find Full Text PDFMessage passing (MP) is a computational technique used to find approximate solutions to a variety of problems defined on networks. MP approximations are generally accurate in locally treelike networks but require corrections to maintain their accuracy level in networks rich with short cycles. However, MP may already be computationally challenging on very large networks and additional costs incurred by correcting for cycles could be prohibitive.
View Article and Find Full Text PDFMany datasets give partial information about an ordering or ranking by indicating which team won a game, which item a user prefers, or who infected whom. We define a continuous spin system whose Gibbs distribution is the posterior distribution on permutations, given a probabilistic model of these interactions. Using the cavity method, we derive a belief propagation algorithm that computes the marginal distribution of each node's position.
View Article and Find Full Text PDFBelief propagation is a widely used message passing method for the solution of probabilistic models on networks such as epidemic models, spin models, and Bayesian graphical models, but it suffers from the serious shortcoming that it works poorly in the common case of networks that contain short loops. Here, we provide a solution to this long-standing problem, deriving a belief propagation method that allows for fast calculation of probability distributions in systems with short loops, potentially with high density, as well as giving expressions for the entropy and partition function, which are notoriously difficult quantities to compute. Using the Ising model as an example, we show that our approach gives excellent results on both real and synthetic networks, improving substantially on standard message passing methods.
View Article and Find Full Text PDFOne can often make inferences about a growing network from its current state alone. For example, it is generally possible to determine how a network changed over time or pick among plausible mechanisms explaining its growth. In practice, however, the extent to which such problems can be solved is limited by existing techniques, which are often inexact, inefficient, or both.
View Article and Find Full Text PDFNetwork data sets are often constructed by some kind of thresholding procedure. The resulting networks frequently possess properties such as heavy-tailed degree distributions, clustering, large connected components, and short average shortest path lengths. These properties are considered typical of complex networks and appear in many contexts, prompting consideration of their universality.
View Article and Find Full Text PDFThe information theoretic measure known as mutual information is widely used as a way to quantify the similarity of two different labelings or divisions of the same set of objects, such as arises, for instance, in clustering and classification problems in machine learning or community detection problems in network science. Here we argue that the standard mutual information, as commonly defined, omits a crucial term which can become large under real-world conditions, producing results that can be substantially in error. We derive an expression for this missing term and hence write a corrected mutual information that gives accurate results even in cases where the standard measure fails.
View Article and Find Full Text PDFMessage passing is a fundamental technique for performing calculations on networks and graphs with applications in physics, computer science, statistics, and machine learning, including Bayesian inference, spin models, satisfiability, graph partitioning, network epidemiology, and the calculation of matrix eigenvalues. Despite its wide use, however, it has long been recognized that the method has a fundamental flaw: It works poorly on networks that contain short loops. Loops introduce correlations that can cause the method to give inaccurate answers or to fail completely in the worst cases.
View Article and Find Full Text PDFWe study mixing patterns in networks, meaning the propensity for nodes of different kinds to connect to one another. The phenomenon of assortative mixing, whereby nodes prefer to connect to others that are similar to themselves, has been widely studied, but here we go further and examine how and to what extent nodes that are otherwise similar can have different preferences. Many individuals in a friendship network, for instance, may prefer friends who are roughly the same age as themselves, but some may display a preference for older or younger friends.
View Article and Find Full Text PDFWe consider signed networks in which connections or edges can be either positive (friendship, trust, alliance) or negative (dislike, distrust, conflict). Early literature in graph theory theorized that such networks should display "structural balance," meaning that certain configurations of positive and negative edges are favored and others are disfavored. Here we propose two measures of balance in signed networks based on the established notions of weak and strong balance, and we compare their performance on a range of tasks with each other and with previously proposed measures.
View Article and Find Full Text PDFWhile there exist a wide range of effective methods for community detection in networks, most of them require one to know in advance how many communities one is looking for. Here we present a method for estimating the number of communities in a network using a combination of Bayesian inference with a novel prior and an efficient Monte Carlo sampling scheme. We test the method extensively on both real and computer-generated networks, showing that it performs accurately and consistently, even in cases where groups are widely varying in size or structure.
View Article and Find Full Text PDFThe field of computational cognitive neuroscience (CCN) builds and tests neurobiologically detailed computational models that account for both behavioral and neuroscience data. This article leverages a key advantage of CCN-namely, that it should be possible to interface different CCN models in a plug-and-play fashion-to produce a new and biologically detailed model of perceptual category learning. The new model was created from two existing CCN models: the HMAX model of visual object processing and the COVIS model of category learning.
View Article and Find Full Text PDFVirtually all current theories of category learning assume that humans learn new categories by gradually forming associations directly between stimuli and responses. In information-integration category-learning tasks, this purported process is thought to depend on procedural learning implemented via dopamine-dependent cortical-striatal synaptic plasticity. This article proposes a new, neurobiologically detailed model of procedural category learning that, unlike previous models, does not assume associations are made directly from stimulus to response.
View Article and Find Full Text PDF