ACS Appl Mater Interfaces
December 2018
Solution-processed TiO and other metal-oxide electron-transporting layers (ETLs) for perovskite solar cells commonly require high-temperature annealing (>450 °C), causing the underlying indium-tin oxide (ITO) to degrade and inhibiting the use of flexible plastic substrates, such as poly(ethylene naphthalate). Laser-based solar cell manufacturing is attracting increased interest and can enable rapid and low-temperature fabrication of perovskite solar cells. By using novel pulsed ultraviolet laser processing on the solution-processed TiO, we demonstrate a champion 17.
View Article and Find Full Text PDFIn order to realize high-throughput roll-to-roll manufacturing of flexible perovskite solar cells, low-temperature processing of all device components must be realized. However, the most commonly used electron transporting layer in high-performance perovskite solar cells is based on TiO thin films processed at high temperature (>450 °C). Here, we demonstrate room temperature solution processing of the TiO layer that performs as well as the high temperature TiO layer in perovskite solar cells, as evidenced by a champion solar cell efficiency of 16.
View Article and Find Full Text PDF