Maraviroc (MVC), a CCR5 antagonist, reduces liver fibrosis, injury and tumour burden in mice fed a hepatocarcinogenic diet, suggesting it has potential as a cancer therapeutic. We investigated the effect of MVC on liver progenitor cells (LPCs) and macrophages as both have a role in hepatocarcinogenesis. Mice were fed the hepatocarcinogenic choline-deficient, ethionine-supplemented diet (CDE) ± MVC, and immunohistochemistry, RNA and protein expression were used to determine LPC and macrophage abundance, migration and related molecular mechanisms.
View Article and Find Full Text PDFThe rising prevalence of chronic liver disease, coupled with a permanent shortage of organs for liver transplantation, has sparked enormous interest in alternative treatment strategies. Previous protocols to generate hepatocyte-like cells (HLCs) via pancreas-to-liver transdifferentiation have utilised fetal bovine serum, introducing unknown variables and severely limiting study reproducibility. Therefore, the main goal of this study was to develop a protocol for transdifferentiation of pancreatic progenitor cells to HLCs in a chemically defined, serum-free culture medium.
View Article and Find Full Text PDFLiver progenitor cells (LPCs) can proliferate extensively, are able to differentiate into hepatocytes and cholangiocytes, and contribute to liver regeneration. The presence of LPCs, however, often accompanies liver disease and hepatocellular carcinoma (HCC), indicating that they may be a cancer stem cell. Understanding LPC biology and establishing a sensitive, rapid, and reliable method to detect their presence in the liver will assist diagnosis and facilitate monitoring of treatment outcomes in patients with liver pathologies.
View Article and Find Full Text PDFBackground & Aims: The availability of non-tumorigenic and tumorigenic liver progenitor cell (LPC) lines affords a method to screen putative anti-liver cancer agents to identify those that are selectively effective. To prove this principle we tested thalidomide and a range of its derivatives and compared them to lenalidomide and sorafenib, to assess their growth-inhibitory effects.
Methods: Cell growth, the mitotic and apoptotic index of cell cultures were measured using the Cellavista instrument (SynenTec) using commercially available reagents.
Unlabelled: Liver progenitor cells (LPCs) are necessary for repair in chronic liver disease because the remaining hepatocytes cannot replicate. However, LPC numbers also correlate with disease severity and hepatocellular carcinoma risk. Thus, the progenitor cell response in diseased liver may be regulated to optimize liver regeneration and minimize the likelihood of tumorigenesis.
View Article and Find Full Text PDFAs TNF is one of the earliest signals that can be detected in the leukocyte-derived inflammatory cascade which drives subsequent cytokine production, we are interested in determining whether TNF is one of the initiating factors controlling liver remodeling and regeneration following chronic liver damage. One of the early responses is the expression of lymphotoxin-β by hepatic progenitor oval cells. The aim of this study was to determine whether hepatic expression of LT-β was controlled by TNF and to understand the basis of this regulation.
View Article and Find Full Text PDFBackground & Aims: The mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R), a multifunctional protein, plays a central role in intracellular targeting of lysosomal enzymes and control of insulin-like growth factor II (IGF-II) bioactivity. Importantly, the gene encoding this receptor is frequently inactivated in a wide range of malignant tumors including hepatocellular carcinomas. Thus, M6P/IGF2R is considered a putative liver tumor suppressor.
View Article and Find Full Text PDFJ Tissue Eng Regen Med
October 2013
Liver progenitor cells (LPCs) are a promising source of cells to treat liver disease by cell therapy, due to their capability for self-replication and bipotentiality. In order to establish useful culture systems of LPCs and apply them to future clinical therapies, it is necessary to understand their interactions with their microenvironment and especially with the extracellular matrix (ECM). There is considerable evidence from in vivo studies that matrix proteins affect the activation, expansion, migration and differentiation of LPCs, but the information on the role that specific ECMs play in regulating LPCs in vitro is more limited.
View Article and Find Full Text PDFUnlabelled: Liver progenitor cells (LPCs) represent the cell compartment facilitating hepatic regeneration during chronic injury while hepatocyte-mediated repair mechanisms are compromised. LPC proliferation is frequently observed in human chronic liver diseases such as hereditary hemochromatosis, fatty liver disease, and chronic hepatitis. In vivo studies have suggested that a tumor necrosis factor family member, tumor necrosis factor-like weak inducer of apoptosis (TWEAK), is promitotic for LPCs; whether it acts directly is not known.
View Article and Find Full Text PDFBackground & Aims: Although a strong association between liver progenitor cells (LPCs) and inflammation exists in many chronic liver diseases, the exact role of the immune system in LPC-mediated hepatic regeneration remains unclear. A number of pro-inflammatory factors were identified in cytokine knockout mice in which the LPC response was attenuated but neither the mechanism nor the producing cells are known.
Methods: To identify the critical immune cells and cytokines required in the LPC response, we compared two diet-induced models of liver injury with two recently established transgenic models of immune-mediated hepatitis.
We report the syntheses of five natural product maleimide and maleic anhydrides from the mushroom Antrodia camphorata. The ability of these compounds to affect proliferation in non-tumourigenic and tumourigenic liver progenitor cell lines was monitored by the Cellscreen system, a novel and nondestructive rapid-screening instrument. Additionally, a range of new aryl-functionalised differentiated derivatives were prepared through a Suzuki cross-coupling reaction to influence cell-growth effects.
View Article and Find Full Text PDFPurpose: The goals of the present study were to investigate the mechanism of hypoxia-mediated chemoresistance in liver cancer cells and tumorigenic hepatic progenitor (oval) cells and to determine whether disrupting an Akt/hypoxia-inducible factor-1alpha (HIF-1alpha)/platelet-derived growth factor (PDGF)-BB autocrine loop can enhance chemotherapeutic efficacy in hypoxia.
Experimental Design: Five hepatocellular carcinoma (HCC) cell lines and two hepatic progenitor cell lines were treated in vitro with cisplatin under both normoxic and hypoxic conditions. To generate ischemic hypoxia for tumor cells in vivo, hepatic artery ligation was applied to an orthotopic HCC model.
Liver progenitor (oval) cells have enormous potential in the treatment of patients with liver disease using a cell therapy approach, but their use is limited by their scarcity and the number of donor livers from which they can be derived. Bone marrow may be a suitable source. Previously the derivation of oval cells from bone marrow was examined in rodents using hepatotoxins and partial hepatectomy to create liver damage.
View Article and Find Full Text PDFInt J Biochem Cell Biol
June 2008
Liver progenitor cells (LPCs) play a major role in the regeneration process after chronic liver damage, giving rise to hepatocytes and cholangiocytes. Thus, they provide a cell-based therapeutic alternative to organ transplant, the current treatment of choice for end-stage liver disease. In recent years, much attention has focused on unravelling the cytokines and growth factors that underlie this response.
View Article and Find Full Text PDFOval cells have great potential for use in cell therapy to treat liver disease, however this cannot be achieved until the factors which govern their proliferation and differentiation are better understood. We describe a method to establish primary cultures of murine oval cells, and the derivation of two novel lines from these. Primary cultures from the livers of wildtype or TAT-GRE lacZ transgenic mice subjected to a choline-deficient, ethionine-supplemented diet comprised up to 80% oval cells at day 7 based on A6 or CK19 staining.
View Article and Find Full Text PDFUnlabelled: Gp130-mediated IL-6 signaling may play a role in oval cell proliferation in vivo. Levels of IL-6 are elevated in livers of mice treated with a choline-deficient ethionine-supplemented (CDE) diet that induces oval cells, and there is a reduction of oval cells in IL-6 knockout mice. The CDE diet recapitulates characteristics of chronic liver injury in humans.
View Article and Find Full Text PDFUnlabelled: Oval cells are hepatocytic precursors that proliferate in late-stage cirrhosis and that give rise to a subset of human hepatocellular carcinomas. Although liver regeneration typically occurs through replication of existing hepatocytes, oval cells proliferate only when hepatocyte proliferation is inhibited. Transforming growth factor-beta (TGF-beta) is a key inhibitory cytokine for hepatocytes, both in vitro and in vivo.
View Article and Find Full Text PDFProliferation studies on mammalian cells have been disadvantaged by the limited availability of non-invasive assays as the majority of approaches are based on chemical treatment, sampling or staining of cells removed from culture. In this study, we utilised the Cellscreen system (Innovatis AG, Bielefeld, Germany), a non-invasive automated technique for measuring proliferation of adherent and suspension cells over time. We have evaluated the ability of the Cellscreen system to monitor and quantify growth of adherent liver progenitor cells over time and tested several applications, (i) serum reduction or (ii) treatment with a cytokine.
View Article and Find Full Text PDFOval cell proliferation precedes neoplasia in many rodent models of hepatocellular carcinoma and prevention of this proliferative response can reduce the risk of subsequent carcinoma. This study aimed to determine whether a selective cyclo-oxygenase-2 (COX-2) inhibitor, SC-236, affects (i) the oval cell response to liver injury in a mouse model of hepatocarcinogenesis and (ii) an oval cell line. Four-week-old mice were fed either normal chow or a choline deficient, ethionine supplemented (CDE) diet in the presence or absence of SC-236.
View Article and Find Full Text PDFBackground: Lymphotoxin-beta (LT-beta) plays an important role in inflammation and its promoter contains a functional nuclear factor-kappaB (NF-kappaB) element, rendering it a likely target of pro-inflammatory cytokines. Inflammatory cytokines play a central role in liver regeneration resulting from acute or chronic liver injury, with interleukin (IL)-6 signaling essential for liver regeneration induced by partial hepatectomy. In hepatic oval cells observed following chronic liver injury, LT-beta levels are upregulated, suggesting a link between LT-beta and liver regeneration.
View Article and Find Full Text PDFFollowing acute injury, the liver regenerates through hepatocyte division. If this pathway is impaired, liver repair depends on the recruitment of adult liver progenitor (oval) cells. Mice fed a choline deficient, ethionine supplemented (CDE) diet possess substantial numbers of oval cells, which can be isolated, or examined in vivo.
View Article and Find Full Text PDFWound Repair Regen
March 2005
Following acute injury, liver is usually regenerated from hepatocytes by a process that is dependent on interleukin (IL)-6. If this pathway is impaired, restoration of the liver mass and ultimately the survival of the animal are dependent on recruitment of cells from a precursor cell population, either a stem cell or an oval cell. Importantly, oval cells are also implicated in tumorigenesis.
View Article and Find Full Text PDF