Quantum information processing demands efficient quantum light sources (QLS) capable of producing high-fidelity single photons or entangled photon pairs. Single epitaxial quantum dots (QDs) have long been proven to be efficient sources of deterministic single photons; however, their production via molecular-beam epitaxy presents scalability challenges. Conversely, colloidal semiconductor QDs offer scalable solution processing and tunable photoluminescence, but suffer from broader linewidths and unstable emissions.
View Article and Find Full Text PDFCatalysis stands as an indispensable cornerstone of modern society, underpinning the production of over 80% of manufactured goods and driving over 90% of industrial chemical processes. As the demand for more efficient and sustainable processes grows, better catalysts are needed. Understanding the working principles of catalysts is key, and over the last 50 years, surface-enhanced Raman Spectroscopy (SERS) has become essential.
View Article and Find Full Text PDFWe report a strategy to accelerate the synthesis and increase the crystallinity of colloidal crystals (CCs) engineered with DNA. Specifically, by holding the DNA-modified Au particle building blocks above the of the DNA bonding elements (i.e.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
Electrochemical reactivity is known to be dictated by the structure and composition of the electrocatalyst-electrolyte interface. Here, we show that optically generated electric fields at this interface can influence electrochemical reactivity insofar as to completely switch reaction selectivity. We study an electrocatalyst composed of gold-copper alloy nanoparticles known to be active toward the reduction of CO to CO.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2024
Coherent phonon modes supported by plasmonic nanoparticles offer prospective applications in chemical and biological sensing. Whereas the characterization of these phonon modes often requires single-particle measurements, synthetic routes to narrow size distributions of nanoparticles permit ensemble investigations. Recently, the synthesis of highly monodisperse gold tetrahedral nanoparticles with tunable edge lengths and corner sharpnesses has been developed.
View Article and Find Full Text PDFInvestigations of entangled and classical two-photon absorption have been carried out for six donor (D)-acceptor (A)-donor (D) compounds containing the dithieno pyrrole (DTP) unit as donor and acceptors with systematically varied electronic properties. Comparing ETPA (quantum) and TPA (classical) results reveals that the ETPA cross section decreases with increasing TPA cross section for molecules with highly off-resonant excited states for single-photon excitation. Theory (TDDFT) results are in semiquantitative agreement with this anticorrelated behavior due to the dependence of the ETPA cross section but not TPA on the two-photon excited state lifetime.
View Article and Find Full Text PDFThe interaction between low-temperature plasma and liquid enables highly reactive solution phase chemistry and fast reaction kinetics. In this work, we demonstrate the rapid synthesis of stabilizer-free, spherical and crystalline gold nanoparticles (AuNP). More than 70% of gold ion complex (AuCl ) conversion is achieved within a droplet residence time in the plasma of ∼10 ms.
View Article and Find Full Text PDFIn this study, we investigate second- and third-harmonic generation processes in Au nanorod systems using the real-time time-dependent density functional tight binding method. Our study focuses on the computation of nonlinear signals based on the time dependent dipole response induced by linearly polarized laser pulses interacting with nanoparticles. We systematically explore the influence of various laser parameters, including pump intensity, duration, frequency, and polarization directions, on harmonic generation.
View Article and Find Full Text PDFWe report on an electron donor-electron acceptor-stable radical (D-A-R) molecule in which an electron spin state first prepared on R is followed by photogeneration of an entangled singlet [D-A] spin pair to produce D-A-R. Since the A and R spins within D-A-R are uncorrelated, spin teleportation from R to D occurs with a maximal 25% efficiency only for the singlet pair (A-R) by spin-allowed electron transfer from A to R. However, since [D-A] is sufficiently long-lived, coherent spin mixing involving the unreactive (A-R) population affects entanglement and teleportation within D-A-R.
View Article and Find Full Text PDFExcited atomic nitrogen atoms play an important role in plasma formation in hypersonic shock-waves, as happens during spacecraft reentry and other high velocity vehicle applications. In this study, we have thoroughly studied collision induced excitation associated with two colliding nitrogen atoms in the N(4S), N(2D), and N(2P) states at collision energies up to 6 eV, using time-independent scattering calculations to determine cross sections and temperature-dependent rate coefficients. The calculations are based on potential curves and couplings determined in earlier multireference configuration interaction calculations with large basis sets, and the results are in good agreement with experiments where comparisons are possible.
View Article and Find Full Text PDFPlasma-driven solution electrochemistry (PDSE) uses plasma-generated reactive species to drive redox reactions in solution. Nonthermal, atmospheric pressure plasmas, when irradiating water, produce many redox species. While PDSE is a promising chemical tool, there is limited insight into the mechanisms of the reactions due to the variety of short-lived reagents produced.
View Article and Find Full Text PDFThe field of molecular scattering is reviewed as it pertains to gas-gas as well as gas-surface chemical reaction dynamics. We emphasize the importance of collaboration of experiment and theory, from which new directions of research are being pursued on increasingly complex problems. We review both experimental and theoretical advances that provide the modern toolbox available to molecular-scattering studies.
View Article and Find Full Text PDFChemical modification is a powerful strategy for tuning the electronic properties of 2D semiconductors. Here we report the electrophilic trifluoromethylation of 2D WSe and MoS under mild conditions using the reagent trifluoromethyl thianthrenium triflate (TTT). Chemical characterization and density functional theory calculations reveal that the trifluoromethyl groups bind covalently to surface chalcogen atoms as well as oxygen substitution sites.
View Article and Find Full Text PDFRare earth elements (REEs), critical to modern industry, are difficult to separate and purify, given their similar physicochemical properties originating from the lanthanide contraction. Here, we systematically study the transport of lanthanide ions (Ln) in artificially confined angstrom-scale two-dimensional channels using MoS-based building blocks in an aqueous environment. The results show that the uptake and permeability of Ln assume a well-defined volcano shape peaked at Sm.
View Article and Find Full Text PDFElucidating the relationship between metal-ligand interactions and the associated conformational change of the ligand is critical for understanding the separation of lanthanides ion binding. Here we examine DTPA, a multidentate ligand that binds lanthanides, in its free and metal bound conformations using ultrafast polarization dependent vibrational spectroscopy. The polarization dependent pump-probe spectra were analyzed to extract the isotropic and anisotropic response of DTPA's carbonyl groups in the 1550-1650 cm spectral region.
View Article and Find Full Text PDFAfter five decades of investigation since the 1970s, the nature of photon-induced or electron-induced water dissociation is still largely studied only in the gas phase, with a notable absence of dynamics studies of water clusters and bulk water. We study the problem with density functional theory and the nonadiabatic fewest switches surface hopping technique considering both singlet and triplet excited states to study the dissociation of water clusters leading mainly to OH + H. For clusters of 40 water molecules, the mean dissociation time was found to be <10 fs, and the threshold energy was ∼6 eV.
View Article and Find Full Text PDFMany applications involving plasma-liquid interactions depend on the reactive processes occurring at the plasma-liquid interface. We report on a falling liquid film plasma reactor allowing for in situ optical absorption measurements of the time-dependence of the ferricyanide/ferrocyanide redox reactivity, complemented with ex situ measurement of the decomposition of formate. We found excellent agreement between the measured decomposition percentages and the diffusion-limited decomposition of formate by interfacial plasma-enabled reactions, except at high pH in thin liquid films, indicating the involvement of previously unexplored plasma-induced liquid phase chemistry enabled by long-lived reactive species.
View Article and Find Full Text PDFEmulating angstrom-scale dynamics of the highly selective biological ion channels is a challenging task. Recent work on angstrom-scale artificial channels has expanded our understanding of ion transport and uptake mechanisms under confinement. However, the role of chemical environment in such channels is still not well understood.
View Article and Find Full Text PDFCoupling plasmonic and functional materials provides a promising way to generate multifunctional structures. However, finding plasmonic nanomaterials and elucidating the roles of various geometric and dielectric configurations are tedious. This work describes a combinatorial approach to rapidly exploring and identifying plasmonic heteronanomaterials.
View Article and Find Full Text PDF