Publications by authors named "George Bou Gharios"

Collagen fibrils are the primary supporting scaffold of vertebrate tissues but how they are assembled is unclear. Here, using CRISPR-tagging of type I collagen and SILAC labelling, we elucidate the cellular mechanism for the spatiotemporal assembly of collagen fibrils, in cultured fibroblasts. Our findings reveal multifaceted trafficking of collagen, including constitutive secretion, intracellular pooling, and plasma membrane-directed fibrillogenesis.

View Article and Find Full Text PDF

Osteoarthritis (OA) is characterised by the deterioration of cartilage in the joints and pain. We hypothesise that semaphorin-3A (sema-3A), a chemorepellent for sensory nerves, plays a role in joint degradation and pain. We used the mechanical joint loading (MJL) model of OA to investigate sema-3A expression in the joint and examine its association with the development of OA and pain.

View Article and Find Full Text PDF

Unlabelled: Melanoma is the leading cause of skin cancer-related death. As prognosis of patients with melanoma remains problematic, identification of new therapeutic targets remains essential. Matricellular proteins are nonstructural extracellular matrix proteins.

View Article and Find Full Text PDF

Despite urgent warnings about the spread of multidrug-resistant bacteria, the antibiotic development pipeline has remained sparsely populated. Naturally occurring antibacterial compounds may provide novel chemical starting points for antibiotic development programs and should be actively sought out. Evaluation of homogentisic acid (HGA), an intermediate in the tyrosine degradation pathway, showed that the compound had innate activity against Gram-positive and Gram-negative bacteria, which was lost following conversion into the degradation product benzoquinone acetic acid (BQA).

View Article and Find Full Text PDF

Amongst a cohort of 88 alkaptonuria (AKU) patients attending the United Kingdom National Alkaptonuria Centre (NAC), four unrelated patients had co-existing Parkinson's disease (PD). Two of the NAC patients developed PD before receiving nitisinone (NIT) while the other two developed overt PD during NIT therapy. NIT lowers redox-active homogentisic acid (HGA) and profoundly increases tyrosine (TYR).

View Article and Find Full Text PDF

Hereditary tyrosinemia type 1 (HT1) is a genetic disorder of the tyrosine degradation pathway (TIMD) with unmet therapeutic needs. HT1 patients are unable to fully break down the amino acid tyrosine due to a deficient fumarylacetoacetate hydrolase (FAH) enzyme and, therefore, accumulate toxic tyrosine intermediates. If left untreated, they experience hepatic failure with comorbidities involving the renal and neurological system and the development of hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF

Fragmentation, disorganization, and depletion of the collagen-rich dermal extracellular matrix are hallmarks of aged human skin. These deleterious alterations are thought to critically mediate many of the prominent clinical attributes of aged skin, including thinning, fragility, impaired wound healing, and a propensity for carcinoma. Matrix metalloproteinase-1 (MMP1) initiates the cleavage of collagen fibrils and is significantly increased in dermal fibroblasts in aged human skin.

View Article and Find Full Text PDF

Metabolomic analyses in alkaptonuria (AKU) have recently revealed alternative pathways in phenylalanine-tyrosine (phe-tyr) metabolism from biotransformation of homogentisic acid (HGA), the active molecule in this disease. The aim of this research was to study the phe-tyr metabolic pathway and whether the metabolites upstream of HGA, increased in nitisinone-treated patients, also undergo phase 1 and 2 biotransformation reactions. Metabolomic analyses were performed on serum and urine from patients partaking in the SONIA 2 phase 3 international randomised-controlled trial of nitisinone in AKU (EudraCT no.

View Article and Find Full Text PDF

Changes in the phenylalanine (PHE)/tyrosine (TYR) pathway metabolites before and during homogentisic acid (HGA)-lowering by nitisinone in the Suitability of Nitisinone in Alkaptonuria (AKU) 2 (SONIA 2) study enabled the magnitude of the flux in the pathway to be examined. SONIA 2 was a 48-month randomised, open-label, evaluator-blinded, parallel-group study performed in the UK, France and Slovakia recruiting patients with confirmed AKU to receive either 10 mg nitisinone or no treatment. Site visits were performed at 3 months and yearly thereafter.

View Article and Find Full Text PDF

The osteogenesis imperfecta murine (oim) model with solely homotrimeric (α1)3 type I collagen, owing to a dysfunctional α2(I) collagen chain, has a brittle bone phenotype, implying that the (α1)2(α2)1 heterotrimer is required for physiological bone function. Here, we comprehensively show, for the first time, that mice lacking the α2(I) chain do not have impaired bone biomechanical or structural properties, unlike oim homozygous mice. However, Mendelian inheritance was affected in male mice of both lines, and male mice null for the α2(I) chain exhibited age-related loss of condition.

View Article and Find Full Text PDF

The low-density lipoprotein receptor-related protein 1 (LRP1) is a cell-surface receptor ubiquitously expressed in various tissues. It plays tissue-specific roles by mediating endocytosis of a diverse range of extracellular molecules. Dysregulation of LRP1 is involved in multiple conditions including osteoarthritis (OA) but little information is available about the specific profile of direct binding partners of LRP1 (ligandome) for each tissue, which would lead to a better understanding of its role in disease states.

View Article and Find Full Text PDF

Increased trabecular meshwork (TM) cell and tissue contractility is a driver of the reduced outflow facility and elevation of intraocular pressure (IOP) associated with primary open-angle glaucoma (POAG). Connective tissue growth factor (CTGF) is an established mediator of TM cell contractility, and its expression is increased in POAG due to transforming growth factor β 2 (TGFβ2) signalling. Inhibiting CTGF upregulation using microRNA (miRNA) mimetics could represent a new treatment option for POAG.

View Article and Find Full Text PDF

Nitisinone (NIT) causes tyrosinaemia and corneal keratopathy (KP), especially in men. However, the adaptation within the phenylalanine (PHE)/tyrosine (TYR) catabolic pathway during KP is not understood. The objective of this study is to assess potential differences in the PHE/TYR pathway during KP and the influence of gender in NIT-induced tyrosinaemia in alkaptonuria (AKU).

View Article and Find Full Text PDF

Background: Gene expression in healthy synovium remains poorly characterised. Thus, synovial functional activity changes associated with osteoarthritis (OA) are difficult to define. This study sought to identify differentially expressed genes (DEG) of end-stage OA and assess the influence of OA risk factors on these DEG.

View Article and Find Full Text PDF

Laminins (LMs) are essential components of all basement membranes where they regulate an extensive array of tissue functions. Alternative splicing from the laminin α3 gene produces a non-laminin but netrin-like protein, Laminin N terminus α31 (LaNt α31). LaNt α31 is widely expressed in intact tissue and is upregulated in epithelial cancers and during wound healing.

View Article and Find Full Text PDF

Background: Knee joint injuries, common in athletes, have a high risk of developing post-traumatic osteoarthritis (PTOA). Ligaments, matrix-rich connective tissues, play important mechanical functions stabilising the knee joint, and yet their role post-trauma is not understood. Recent studies have shown that ligament extracellular matrix structure is compromised in the early stages of spontaneous osteoarthritis (OA) and PTOA, but it remains unclear how ligament matrix pathology affects ligament mechanical function.

View Article and Find Full Text PDF

Degradation of articular cartilage is the defining feature of end-stage osteoarthritis (OA) with osteophytes, subchondral sclerosis, malalignment and joint space narrowing being additional indicators of advanced disease. Obesity, older age and female gender are OA risk factors. Differing degrees of synovitis are observed in OA, soft tissue and traumatic injuries of the knee.

View Article and Find Full Text PDF

Temporomandibular joint dysfunction (TMJD) is characterised by clinical symptoms involving both the masticatory muscles and the temporomandibular joint (TMJ). Disc internal derangement and osteoarthritis (OA) are the most common forms of TMJD. Currently, the molecular process associated with degenerative changes in the TMJ is unclear.

View Article and Find Full Text PDF

Osteoporosis is the most common age-related metabolic bone disorder, which is characterized by low bone mass and deterioration in bone architecture, with a propensity to fragility fractures. The best treatment for osteoporosis relies on stimulation of osteoblasts to form new bone and restore bone structure, however, anabolic therapeutics are few and their use is time restricted. Here, we report that Syndecan-3 increases new bone formation through enhancement of WNT signaling in osteoblasts.

View Article and Find Full Text PDF

Alkaptonuria (AKU) is caused by homogentisate 1,2-dioxygenase (HGD) deficiency. This study aimed to determine if HGD and other enzymes related to tyrosine metabolism are associated with the location of ochronotic pigment. Liver, kidney, skin, bone, brain, eyes, spleen, intestine, lung, heart, cartilage, and muscle were harvested from 6 AKU BALB/c (3 females, 3 males) and 4 male C57BL/6 wild type (WT) mice.

View Article and Find Full Text PDF

Connective tissue growth factor (CTGF, CCN2) is a matricellular protein which plays key roles in normal mammalian development and in tissue homeostasis and repair. In pathological conditions, dysregulated CCN2 has been associated with cancer, cardiovascular disease, and tissue fibrosis. In this study, genetic manipulation of the CCN2 gene was employed to investigate the role of CCN2 expression in vitro and in experimentally-induced models of pulmonary fibrosis and pulmonary arterial hypertension (PAH).

View Article and Find Full Text PDF

Alkaptonuria (AKU) is an inherited disorder of tyrosine metabolism caused by lack of active enzyme homogentisate 1,2-dioxygenase (HGD). The primary consequence of HGD deficiency is increased circulating homogentisic acid (HGA), the main agent in the pathology of AKU disease. Here we report the first metabolomic analysis of AKU homozygous knockout ( ) mice to model the wider metabolic effects of deletion and the implication for AKU in humans.

View Article and Find Full Text PDF

Cartilage is a specialized skeletal tissue with a unique extracellular matrix elaborated by its resident cells, chondrocytes. The tissue presents in several forms, including growth plate and articular cartilage, wherein chondrocytes follow a differential differentiation program and have different fates. The induction of gene modifications in cartilage specifically relies on mouse transgenes and knockin alleles taking advantages of transcriptional elements primarily active in chondrocytes at a specific differentiation stage or in a specific cartilage type.

View Article and Find Full Text PDF