Publications by authors named "George Bennett"

Real-time chemical sensing is crucial for applications in environmental and health monitoring. Biosensors can detect a variety of molecules through genetic circuits that use these chemicals to trigger the synthesis of a coloured protein, thereby producing an optical signal. However, the process of protein expression limits the speed of this sensing to approximately half an hour, and optical signals are often difficult to detect in situ.

View Article and Find Full Text PDF

Silver nanomaterials have potent antibacterial properties that are the foundation for their wide commercial use as well as for concerns about their unintended environmental impact. The nanoparticles themselves are relatively biologically inert but they can undergo oxidative dissolution yielding toxic silver ions. A quantitative relationship between silver material structure and dissolution, and thus antimicrobial activity, has yet to be established.

View Article and Find Full Text PDF

This study investigates the localities of low and high F groundwaters in the aquifer system on the flanks of Mount Meru to come up with guidelines to provide groundwater that can be used for drinking water supply without health impacts on the population. Our study focuses on parts of the flanks which were only partially or not at all covered by previous research. Results show that the groundwater chemistry of F-rich NaHCO alkaline groundwater in the area is controlled by dissolution of weathering aluminosilicate minerals, dissolution of F-bearing minerals, the precipitation of carbonate minerals as secondary products and the dissolution of magmatic gases.

View Article and Find Full Text PDF

The population of the semi-arid areas of the countries in the East African Rift Valley (EARV) is faced with serious problems associated with the availability and the quality of the drinking water. In these areas, the drinking water supply largely relies on groundwater characterised by elevated fluoride concentration (> 1.5 mg/L), resulting from interactions with the surrounding alkaline volcanic rocks.

View Article and Find Full Text PDF

Quinolinic acid (QA) is a key intermediate of nicotinic acid (Niacin) which is an essential human nutrient and widely used in food and pharmaceutical industries. In this study, a quinolinic acid producer was constructed by employing comprehensive engineering strategies. Firstly, the quinolinic acid production was improved by deactivation of NadC (to block the consumption pathway), NadR (to eliminate the repression of L-aspartate oxidase and quinolinate synthase), and PtsG (to slow the glucose utilization rate and achieve a more balanced metabolism, and also to increase the availability of the precursor phosphoenolpyruvate).

View Article and Find Full Text PDF

In the San Joaquin Valley (SJV), California, about 10% of drinking water wells since 2010 had arsenic concentrations above the US maximum contaminant level of 10 μg/L. High concentrations of arsenic are often associated with high pH (greater than 7.8) or reduced geochemical conditions.

View Article and Find Full Text PDF

Recombination can be used in the laboratory to overcome component limitations in synthetic biology by creating enzymes that exhibit distinct activities and stabilities from native proteins. To investigate how recombination affects the properties of an oxidoreductase that transfers electrons in cells, we created ferredoxin (Fd) chimeras by recombining distantly related cyanobacterial and cyanomyophage Fds (53% identity) that present similar midpoint potentials but distinct thermostabilities. Fd chimeras having a wide range of amino acid substitutions retained the ability to coordinate an iron-sulfur cluster, although their thermostabilities varied with the fraction of residues inherited from each parent.

View Article and Find Full Text PDF

Bioelectronics brings together the fields of biology and microelectronics to create multifunctional devices with the potential to address longstanding technological challenges and change our way of life. Microbial electrochemical devices are a growing subset of bioelectronic devices that incorporate naturally occurring or synthetically engineered microbes into electronic devices and have broad applications including energy harvesting, chemical production, water remediation, and environmental and health monitoring. The goal of this Viewpoint is to highlight recent advances and ongoing challenges in the rapidly developing field of microbial bioelectronic devices, with an emphasis on materials challenges.

View Article and Find Full Text PDF

Gas boilers dominate domestic heating in the UK, and significant efficiency improvements have been associated with condensing boilers. However, the potential remains for further efficiency improvement by refining the control, system specification and installation in real dwellings. Dynamic building simulation modelling, including detailed heating system componentry, enables a deeper analysis of boiler underperformance.

View Article and Find Full Text PDF

This study addressed the functionality of genetic circuits carrying natural regulatory elements of Clostridium acetobutylicum ATCC 824 in the presence of the respective inducer molecules. Specifically, promoters and their regulators involved in diverse carbon source utilization were characterized using mCherryOpt or beta-galactosidase as a reporter. Consequently, most of the genetic circuits tested in this study were functional in Clostridium acetobutylicum ATCC 824 in the presence of an inducer, leading to the expression of reporter proteins.

View Article and Find Full Text PDF

Mandibular reconstruction requires functional and aesthetic repair and is further complicated by contamination from oral and skin flora. Antibiotic-releasing porous space maintainers have been developed for the local release of vancomycin and to promote soft tissue attachment. In this study, mandibular defects in six sheep were inoculated with 10 colony forming units of Staphylococcus aureus; three sheep were implanted with unloaded porous space maintainers and three sheep were implanted with vancomycin-loaded space maintainers within the defect site.

View Article and Find Full Text PDF
Article Synopsis
  • Marine cyanobacteria are infected by phages that carry ferredoxin (Fd) electron carriers, which may enhance viral fitness by redirecting energy from light.
  • A bioinformatics analysis shows that phage Fds closely resemble cyanobacterial Fds, particularly those involved in photosynthesis and nutrient assimilation.
  • Structural and functional studies of phage Fd (pssm2-Fd) indicate it shares high similarity with cyanobacterial Fds and is capable of transferring electrons to support bacterial growth, suggesting an evolutionary adaptation for interaction with cyanobacteria.
View Article and Find Full Text PDF

Proteins from the ferredoxin (Fd) and flavodoxin (Fld) families function as low potential electrical transfer hubs in cells, at times mediating electron transfer between overlapping sets of oxidoreductases. To better understand protein electron carrier (PEC) use across the domains of life, we evaluated the distribution of genes encoding [4Fe-4S] Fd, [2Fe-2S] Fd, and Fld electron carriers in over 7,000 organisms. Our analysis targeted genes encoding small PEC genes encoding proteins having ≤200 residues.

View Article and Find Full Text PDF

It is of great economic interest to produce succinate from low-grade carbon sources, e.g., lignocellulosic biomass hydrolysate, which mainly contains glucose and xylose.

View Article and Find Full Text PDF

Background: The rapid growth of available knowledge on metabolic processes across thousands of species continues to expand the possibilities of producing chemicals by combining pathways found in different species. Several computational search algorithms have been developed for automating the identification of possible heterologous pathways; however, these searches may return thousands of pathway results. Although the large number of results are in part due to the large number of possible compounds and reactions, a subset of core reaction modules is repeatedly observed in pathway results across multiple searches, suggesting that some subpaths between common compounds were more consistently explored than others.

View Article and Find Full Text PDF
Article Synopsis
  • Producing succinate from low-grade carbon sources, like galactose from oilseed processing, can make it more competitive than petrochemical sources.
  • Efforts to improve galactose utilization involved investigating the roles of the galR and glk genes in engineered strains, revealing that glk is essential for glucose uptake while galR's impact varies based on the succinate production capability of the strain.
  • The newly developed succinate producer strain FZ661T achieved impressive production rates, yielding high amounts of succinate when using mixed sugar feeds, indicating its strong potential for industrial applications.
View Article and Find Full Text PDF

Hydroxy fatty acids (HFAs) are valuable compounds that are widely used in medical, cosmetic and food fields. Production of ω-HFAs bioconversion by engineered has received a lot of attention because this process is environmentally friendly. In this study, a whole-cell bio-catalysis strategy was established to synthesize medium-chain ω-HFAs based on the AlkBGT hydroxylation system from GPo1.

View Article and Find Full Text PDF

A symmetric origin for bacterial ferredoxins was first proposed over 50 y ago, yet, to date, no functional symmetric molecule has been constructed. It is hypothesized that extant proteins have drifted from their symmetric roots via gene duplication followed by mutations. Phylogenetic analyses of extant ferredoxins support the independent evolution of N- and C-terminal sequences, thereby allowing consensus-based design of symmetric 4Fe-4S molecules.

View Article and Find Full Text PDF

Biological electron transfer is challenging to directly regulate using environmental conditions. To enable dynamic, protein-level control over energy flow in metabolic systems for synthetic biology and bioelectronics, we created ferredoxin logic gates that utilize transcriptional and post-translational inputs to control energy flow through a synthetic electron transfer pathway that is required for bacterial growth. These logic gates were created by subjecting a thermostable, plant-type ferredoxin to backbone fission and fusing the resulting fragments to a pair of proteins that self-associate, a pair of proteins whose association is stabilized by a small molecule, and to the termini of a ligand-binding domain.

View Article and Find Full Text PDF

Atom mapping of a chemical reaction is a mapping between the atoms in the reactant molecules and the atoms in the product molecules. It encodes the underlying reaction mechanism and, as such, constitutes essential information in computational studies in drug design. Various techniques have been investigated for the automatic computation of the atom mapping of a chemical reaction, approaching the problem as a graph matching problem.

View Article and Find Full Text PDF

Clostridium acetobutylicum is a natural producer of butanol, butyrate, acetone and ethanol. The pattern of metabolites reflects the partitioning of redox equivalents between hydrogen and carbon metabolites. Here the exogenous genes of ferredoxin-NAD(P) oxidoreductase (FdNR) and trans-enoyl-coenzyme reductase (TER) are introduced to three different Clostridium acetobutylicum strains to investigate the distribution of redox equivalents and butanol productivity.

View Article and Find Full Text PDF

Methane, the primary component of natural gas, is the second most abundant greenhouse gas (GHG) and contributes significantly to climate change. The conversion of methane to industrial platform chemicals provides an attractive opportunity to decrease GHG emissions and utilize this inexpensive and abundantly available gas as a carbon feedstock. While technologies exist for chemical conversion of methane to liquid fuels, the technical complexity of these processes mandate high capital expenditure, large-scale commercial facilities to leverage economies of scale that cannot be efficiently scaled down.

View Article and Find Full Text PDF

While antibiotic-eluting polymethylmethacrylate space maintainers have shown efficacy in the treatment of bacterial periprosthetic joint infection and osteomyelitis, antifungal-eluting space maintainers are associated with greater limitations for treatment of fungal musculoskeletal infections including limited elution concentration and duration. In this study, we have designed a porous econazole-eluting space maintainer capable of greater inhibition of fungal growth than traditional solid space maintainers. The eluted econazole demonstrated bioactivity in a concentration-dependent manner against the most common species responsible for fungal periprosthetic joint infection as well as staphylococci.

View Article and Find Full Text PDF