Publications by authors named "George Ban-Weiss"

Background: Extreme heat and air pollution is associated with increased mortality. Recent evidence suggests the combined effects of both is greater than the effects of each individual exposure. Low neighborhood socioeconomic status ("socioeconomic burden") has also been associated with increased exposure and vulnerability to both heat and air pollution.

View Article and Find Full Text PDF

Extremes of heat and particulate air pollution threaten human health and are becoming more frequent because of climate change. Understanding the health impacts of coexposure to extreme heat and air pollution is urgent. To estimate the association of acute coexposure to extreme heat and ambient fine particulate matter (PM) with all-cause, cardiovascular, and respiratory mortality in California from 2014 to 2019.

View Article and Find Full Text PDF

Solar reflective cool roofs and walls can be used to mitigate the urban heat island effect. While many past studies have investigated the climate impacts of adopting cool surfaces, few studies have investigated their effects on air pollution, especially on particulate matter (PM). This research for the first time investigates the influence of widespread deployment of cool walls on urban air pollutant concentrations, and systematically compares cool wall to cool roof effects.

View Article and Find Full Text PDF

This study for the first time assesses the influence of employing solar reflective "cool" walls on the urban energy budget and summertime climate of the Los Angeles basin. We systematically compare the effects of cool walls to cool roofs, a heat mitigation strategy that has been widely studied and employed, using a consistent modeling framework (the Weather Research and Forecasting model). Adoption of cool walls leads to increases in urban grid cell albedo that peak in the early morning and late afternoon, when the ratio of solar radiation onto vertical walls versus horizontal surfaces is at a maximum.

View Article and Find Full Text PDF

The installation of roofing materials with increased solar reflectance (i.e., "cool roofs") can mitigate the urban heat island effect and reduce energy use.

View Article and Find Full Text PDF

An increase in atmospheric carbon dioxide (CO(2)) concentration influences climate both directly through its radiative effect (i.e., trapping longwave radiation) and indirectly through its physiological effect (i.

View Article and Find Full Text PDF

Emission factors for black carbon (BC) and particle number (PN) were measured from 226 individual heavy-duty (HD) diesel trucks driving through a 1-km-long California highway tunnel in August 2006. Emission factors were based on concurrent increases in BC, PN, and CO2 concentrations (measured at 1 Hz) that corresponded to the passage of individual HD trucks. The distributions of BC and PN emission factors from individual HD trucks are skewed, meaning that a large fraction of pollution comes from a small fraction of the in-use vehicle fleet.

View Article and Find Full Text PDF

Carbonyls can be toxic and highly reactive in the atmosphere. To quantify trends in carbonyl emissions from light-duty (LD) vehicles, measurements were made in a San Francisco Bay area highwaytunnel bore containing essentially all LD vehicles during the summers of 1999, 2001, and 2006. The LD vehicle emission factor for formaldehyde, the most abundant carbonyl, did not change between 1999 and 2001, then decreased by 61 +/- 7% between 2001 and 2006.

View Article and Find Full Text PDF

A flexible mathematical model of an asymmetric bronchial airway bifurcation is presented. The bifurcation structure is automatically determined after the user specifies geometric parameters: radius of parent airway, radii of daughter airways, radii of curvature of the daughter branch toroids, bifurcation angles, and radius of curvature of carina ridge. Detailed shape in the region where the three airways merge is defined by several explicit functions and can be changed with ease in accordance with observed lung structure.

View Article and Find Full Text PDF