Freshwater systems in cold regions, including the Laurentian Great Lakes, are threatened by both eutrophication and salinization, due to excess nitrogen (N), phosphorus (P) and chloride (Cl) delivered in agricultural and urban runoff. However, identifying the relative contribution of urban vs. agricultural development to water quality impairment is challenging in watersheds with mixed land cover, which typify most developed regions.
View Article and Find Full Text PDFHydropower generation, a renewable source of electricity, has been linked to elevated methylmercury (MeHg) concentrations in impoundments and aquatic biota. This study investigates the impact of water level fluctuations (WLF) on MeHg concentrations in water, sediment, and fish. Using a set of controlled microcosm experiments emulating the drawdown/refill dynamics and subsequent sediment exposure to air experienced in reservoirs, we demonstrate that less frequent WLFs, and/or increased exposure of sediment to air, can lead to elevated MeHg concentrations in sediment, and total mercury (THg) and MeHg concentrations in water.
View Article and Find Full Text PDFHarmful algal blooms (HABs) can have dire repercussions on aquatic wildlife and human health, and may negatively affect recreational uses, aesthetics, taste, and odor in drinking water. The factors that influence the occurrence and magnitude of harmful algal blooms and toxin production remain poorly understood and can vary in space and time. It is within this context that we use machine learning (ML) and two 14-year (2005-2018) data sets on water quality and meteorological conditions of China's lakes and reservoirs to shed light on the magnitude and associated drivers of HAB events.
View Article and Find Full Text PDFThe enactment of the Water Framework Directive (WFD) initiated scientific efforts to develop reliable methods for comparing prevailing lake conditions against reference (or nonimpaired) states, using the state of a set biological elements. Drawing a distinction between impaired and natural conditions can be a challenging exercise. Another important aspect is to ensure that water quality assessment is comparable among the different Member States.
View Article and Find Full Text PDFOur understanding of the potential impact of climatic change on catchment hydrology and aquatic system dynamics has been advanced over the past decade, but there are still considerable knowledge gaps with respect to its effects on water quality vis-à-vis the increasing demands for drinking water. In this study, we developed an integrated hydrological-water quality (SWAT-YRWQM) model to elucidate the effects of a changing climate on the trophic state of the shallow Yuqiao Reservoir. Using a two-step downscaling process, we reproduced the prevailing meteorological conditions, as well as the streamflows in three major tributaries of the study area.
View Article and Find Full Text PDFEvaluating the degree of improvement of an impaired freshwater ecosystem resembles the statistical null-hypothesis testing through which the prevailing conditions are compared against a reference state. The pillars of this process involve the robust delineation of what constitutes an achievable reference state; the establishment of threshold values for key environmental variables that act as proxies of the degree of system impairment; and the development of an iterative decision-making process that takes advantage of monitoring data to assess the system-restoration progress and revisit management actions accordingly. Drawing the dichotomy between impaired and non-impaired conditions is a challenging exercise that is surrounded by considerable uncertainty stemming from the variability that natural systems display over time and space, the presence of ecosystem feedback loops (e.
View Article and Find Full Text PDFFreshwater ecosystems can experience harmful algal blooms, which negatively impact recreational uses, aesthetics, taste, and odor in drinking water. Cyanobacterial toxins can have dire repercussions on aquatic wildlife and human health, and the most ubiquitous worldwide are the hepatotoxic compounds known as microcystins. The factors that influence the occurrence and magnitude of cyanobacteria blooms and toxin production vary in space and time and remain poorly understood.
View Article and Find Full Text PDFWe examine the spatio-temporal trends of mercury, a well-known global legacy contaminant, in eleven fish species across all of the Canadian Great Lakes. These particular fish species are selected based on their ecological, commercial, and recreational importance to the biodiversity and fishing industry of the Great Lakes. We present a two-pronged Bayesian methodological framework to rigorously assess mercury temporal trends across multiple fish species and locations.
View Article and Find Full Text PDFPolychlorinated biphenyl (PCB) contamination has historically posed constraints on the recreational and commercial fishing industry in the Great Lakes. Empirical evidence suggests that PCB contamination represents a greater health risk from fish consumption than other legacy contaminants. The present study attempts a rigorous assessment of the spatio-temporal PCB trends in multiple species across the Canadian waters of the Great Lakes.
View Article and Find Full Text PDFKettle holes, small shallow ponds of glacial origin, represent hotspots for biodiversity and biogeochemical cycling. They abound in the young moraine landscape of Northeast Germany, potentially modulating element fluxes in a region where intensive agriculture prevails. The Rittgarten kettle hole, with semi-permanent hydroperiod and a surrounding reed belt, can be considered as a representative case study for such systems.
View Article and Find Full Text PDFInternal phosphorus (P) loading significantly contributes to hysteresis in ecosystem response to nutrient remediation, but the dynamics of sediment P transformations are often poorly characterized. Here, we applied a reaction-transport diagenetic model to investigate sediment P dynamics in the Bay of Quinte, a polymictic, spatially complex embayment of Lake Ontario, (Canada). We quantified spatial and temporal variability of sediment P binding forms and estimated P diffusive fluxes and sediment P retention in different parts of the bay.
View Article and Find Full Text PDFExcess nitrogen (N) export from lowland artificial watersheds (polders) is often assumed to be a major contributor to the cultural eutrophication of downstream aquatic ecosystems. However, the complex transport processes characterizing lowland areas pose significant challenges in accurately quantifying their actual role. In this study, we developed a dynamic model to track N sources and transport pathways in lowland polders.
View Article and Find Full Text PDFTotal mercury levels in aquatic birds and fish communities have been monitored across the Canadian Great Lakes by Environment and Climate Change Canada (ECCC) for the past 42 years (1974-2015). These data (22 sites) were used to examine spatio-temporal variability of mercury levels in herring gull (Larus argentatus) eggs, lake trout (Salvelinus namaycush), walleye (Sander vitreus), and rainbow smelt (Osmerus mordax). Trends were quantified with dynamic linear models, which provided time-variant rates of change of mercury concentrations.
View Article and Find Full Text PDFThe Bay of Quinte, a Z-shaped embayment at the northeastern end of Lake Ontario, has a long history of eutrophication problems primarily manifested as spatially extensive algal blooms and predominance of toxic cyanobacteria. The purpose of this study was to identify the structural changes of the phytoplankton community induced by two environmental alterations: point-source phosphorus (P) loading reduction in the late 1970s and establishment of dreissenid mussels in the mid-1990s. A combination of statistical techniques was used to draw inference about compositional shifts of the phytoplankton assemblage, the consistency of the seasonal succession patterns along with the mechanisms underlying the algal biovolume variability in the Bay of Quinte over the past three decades.
View Article and Find Full Text PDFStriving for long-term sustainability in catchments dominated by human activities requires development of interdisciplinary research methods to account for the interplay between environmental concerns and socio-economic pressures. In this study, we present an integrative analysis of the Lake Simcoe watershed, Ontario, Canada, as viewed from the perspective of a socio-ecological system. Key features of our analysis are (i) the equally weighted consideration of environmental attributes with socioeconomic priorities and (ii) the identification of the minimal number of key socio-hydrological variables that should be included in a parsimonious watershed management framework, aiming to establish linkages between urbanization trends and nutrient export.
View Article and Find Full Text PDFNew scientific understanding is catalyzed by novel technologies that enhance measurement precision, resolution or type, and that provide new tools to test and develop theory. Over the last 50 years, technology has transformed the hydrologic sciences by enabling direct measurements of watershed fluxes (evapotranspiration, streamflow) at time scales and spatial extents aligned with variation in physical drivers. High frequency water quality measurements, increasingly obtained by in situ water quality sensors, are extending that transformation.
View Article and Find Full Text PDFMonitoring mercury levels in fish can be costly because variation by space, time, and fish type/size needs to be captured. Here, we explored if compositing fish samples to decrease analytical costs would reduce the effectiveness of the monitoring objectives. Six compositing methods were evaluated by applying them to an existing extensive dataset, and examining their performance in reproducing the fish consumption advisories and temporal trends.
View Article and Find Full Text PDFFish mercury levels appear to be increasing in Ontario, Canada, which covers a wide geographical area and contains about 250 000 lakes including a share of the North American Great Lakes. Here we project 2050 mercury levels in Ontario fish, using the recently measured levels and rates of changes observed during the last 15 years, and present potential implications for fish and human health. Percentage of northern Ontario waterbodies where sublethal effects of mercury on fish can occur may increase by 2050 from 60% to >98% for Walleye (WE), 44% to 59-70% for Northern Pike (NP), and 70% to 76-92% for Lake Trout (LT).
View Article and Find Full Text PDFPolychlorinated biphenyls (PCBs) and total mercury (THg) are two of the most prevalent contaminants, resulting in restrictive advisories on consuming fish from the Laurentian Great Lakes. The goal of this study is to examine the temporal trends of the two contaminants in walleye (Sander vitreus) and lake trout (Salvelinus namaycush) for Lake Ontario. We employed Bayesian inference techniques to parameterize three different strategies of time series analysis: dynamic linear, exponential decay, and mixed-order modeling.
View Article and Find Full Text PDFTornadoes represent one of nature's most hazardous phenomena that have been responsible for significant destruction and devastating fatalities. Here we present a Bayesian modelling approach for elucidating the spatiotemporal patterns of tornado activity in North America. Our analysis shows a significant increase in the Canadian Prairies and the Northern Great Plains during the summer, indicating a clear transition of tornado activity from the United States to Canada.
View Article and Find Full Text PDFWatershed models have been widely used for creating the scientific basis for management decisions regarding nonpoint source pollution. In this study, we evaluated the current state of watershed scale, spatially distributed, process-based, water quality modeling of nutrient pollution. Beginning from 1992, the year when Beven and Binley published their seminal paper on uncertainty analysis in hydrological modeling, and ending in 2010, we selected 257 scientific publications which (i) employed spatially distributed modeling approaches at a watershed scale; (ii) provided predictions of flow, nutrient/sediment concentrations or loads; and (iii) reported fit to measured data.
View Article and Find Full Text PDF