Publications by authors named "George Azzopardi"

Electron microscopy (EM) enables high-resolution imaging of tissues and cells based on 2D and 3D imaging techniques. Due to the laborious and time-consuming nature of manual segmentation of large-scale EM datasets, automated segmentation approaches are crucial. This review focuses on the progress of deep learning-based segmentation techniques in large-scale cellular EM throughout the last six years, during which significant progress has been made in both semantic and instance segmentation.

View Article and Find Full Text PDF

Dystocia or difficult calving in cattle is detrimental to the health of the afflicted cows and has a negative economic impact on the dairy industry. The goal of this study was to create a data-driven tool for predicting the calving difficulty of non-heifer cows using input variables that are known prior to the moment of insemination. Compared to past studies, we excluded input variables that can only be known during or after insemination, such as birth weight and gestation length.

View Article and Find Full Text PDF

The u-serrated immunodeposition pattern in direct immunofluorescence (DIF) microscopy is a recognizable feature and confirmative for the diagnosis of epidermolysis bullosa acquisita (EBA). Due to unfamiliarity with serrated patterns, serration pattern recognition is still of limited use in routine DIF microscopy. The objective of this study was to investigate the feasibility of using convolutional neural networks (CNNs) for the recognition of u-serrated patterns that can assist in the diagnosis of EBA.

View Article and Find Full Text PDF

Purpose: Staying injury free is a major factor for success in sports. Although injuries are difficult to forecast, novel technologies and data-science applications could provide important insights. Our purpose was to use machine learning for the prediction of injuries in runners, based on detailed training logs.

View Article and Find Full Text PDF

Falling is among the most damaging event elderly people may experience. With the ever-growing aging population, there is an urgent need for the development of fall detection systems. Thanks to the rapid development of sensor networks and the Internet of Things (IoT), human-computer interaction using sensor fusion has been regarded as an effective method to address the problem of fall detection.

View Article and Find Full Text PDF

Face recognition is a valuable forensic tool for criminal investigators since it certainly helps in identifying individuals in scenarios of criminal activity like fugitives or child sexual abuse. It is, however, a very challenging task as it must be able to handle low-quality images of real world settings and fulfill real time requirements. Deep learning approaches for face detection have proven to be very successful but they require large computation power and processing time.

View Article and Find Full Text PDF

Delineation of curvilinear structures in images is an important basic step of several image processing applications, such as segmentation of roads or rivers in aerial images, vessels or staining membranes in medical images, and cracks in pavements and roads, among others. Existing methods suffer from insufficient robustness to noise. In this paper, we propose a novel operator for the detection of curvilinear structures in images, which we demonstrate to be robust to various types of noise and effective in several applications.

View Article and Find Full Text PDF

Rapid increments in the concentration of the radiocarbon in the atmosphere (ΔC) have been identified in the years 774-775 CE and 993-994 CE (Miyake events) using annual measurements on known-age tree-rings. The level of cosmic radiation implied by such increases could cause the failure of satellite telecommunication systems, and thus, there is a need to model and predict them. In this work, we investigated several intelligent computational methods to identify similar events in the past.

View Article and Find Full Text PDF

Direct immunofluorescence (DIF) microscopy of a skin biopsy is used by physicians and pathologists to diagnose autoimmune bullous dermatoses (AIBD). This technique is the reference standard for diagnosis of AIBD, which is used worldwide in medical laboratories. For diagnosis of subepidermal AIBD (sAIBD), two different types of serrated pattern of immunodepositions can be recognized from DIF images, namely n- and u-serrated patterns.

View Article and Find Full Text PDF

The weight of a pig and the rate of its growth are key elements in pig production. In particular, predicting future growth is extremely useful, since it can help in determining feed costs, pen space requirements, and the age at which a pig reaches a desired slaughter weight. However, making these predictions is challenging, due to the natural variation in how individual pigs grow, and the different causes of this variation.

View Article and Find Full Text PDF

Retinal imaging provides a non-invasive opportunity for the diagnosis of several medical pathologies. The automatic segmentation of the vessel tree is an important pre-processing step which facilitates subsequent automatic processes that contribute to such diagnosis. We introduce a novel method for the automatic segmentation of vessel trees in retinal fundus images.

View Article and Find Full Text PDF

The remarkable abilities of the primate visual system have inspired the construction of computational models of some visual neurons. We propose a trainable hierarchical object recognition model, which we call S-COSFIRE (S stands for Shape and COSFIRE stands for Combination Of Shifted FIlter REsponses) and use it to localize and recognize objects of interests embedded in complex scenes. It is inspired by the visual processing in the ventral stream (V1/V2 → V4 → TEO).

View Article and Find Full Text PDF

We propose a computational model of a simple cell with push-pull inhibition, a property that is observed in many real simple cells. It is based on an existing model called Combination of Receptive Fields or CORF for brevity. A CORF model uses as afferent inputs the responses of model LGN cells with appropriately aligned center-surround receptive fields, and combines their output with a weighted geometric mean.

View Article and Find Full Text PDF

Background: Keypoint detection is important for many computer vision applications. Existing methods suffer from insufficient selectivity regarding the shape properties of features and are vulnerable to contrast variations and to the presence of noise or texture.

Methods: We propose a trainable filter which we call Combination Of Shifted FIlter REsponses (COSFIRE) and use for keypoint detection and pattern recognition.

View Article and Find Full Text PDF

Simple cells in primary visual cortex are believed to extract local contour information from a visual scene. The 2D Gabor function (GF) model has gained particular popularity as a computational model of a simple cell. However, it short-cuts the LGN, it cannot reproduce a number of properties of real simple cells, and its effectiveness in contour detection tasks has never been compared with the effectiveness of alternative models.

View Article and Find Full Text PDF