Publications by authors named "George Avvakumov"

The ubiquitin system regulates virtually all aspects of cellular function. We report a method to target the myriad enzymes that govern ubiquitination of protein substrates. We used massively diverse combinatorial libraries of ubiquitin variants to develop inhibitors of four deubiquitinases (DUBs) and analyzed the DUB-inhibitor complexes with crystallography.

View Article and Find Full Text PDF

Here we describe a systematic structure-function analysis of the human ubiquitin (Ub) E2 conjugating proteins, consisting of the determination of 15 new high-resolution three-dimensional structures of E2 catalytic domains, and autoubiquitylation assays for 26 Ub-loading E2s screened against a panel of nine different HECT (homologous to E6-AP carboxyl terminus) E3 ligase domains. Integration of our structural and biochemical data revealed several E2 surface properties associated with Ub chain building activity; (1) net positive or neutral E2 charge, (2) an "acidic trough" located near the catalytic Cys, surrounded by an extensive basic region, and (3) similarity to the previously described HECT binding signature in UBE2L3 (UbcH7). Mass spectrometry was used to characterize the autoubiquitylation products of a number of functional E2-HECT pairs, and demonstrated that HECT domains from different subfamilies catalyze the formation of very different types of Ub chains, largely independent of the E2 in the reaction.

View Article and Find Full Text PDF

Human ubiquitin-specific cysteine protease 5 (USP5, also known as ISOT and isopeptidase T), an 835-residue multidomain enzyme, recycles ubiquitin by hydrolyzing isopeptide bonds in a variety of unanchored polyubiquitin substrates. Activation of the enzyme's hydrolytic activity toward ubiquitin-AMC (7-amino-4-methylcoumarin), a fluorogenic substrate, by the addition of free, unanchored monoubiquitin suggested an allosteric mechanism of activation by the ZnF-UBP domain (residues 163-291), which binds the substrate's unanchored diglycine carboxyl tail. By determining the structure of full-length USP5, we discovered the existence of a cryptic ZnF-UBP domain (residues 1-156), which was tightly bound to the catalytic core and was indispensable for catalytic activity.

View Article and Find Full Text PDF

Histone modifications and DNA methylation represent two layers of heritable epigenetic information that regulate eukaryotic chromatin structure and gene activity. UHRF1 is a unique factor that bridges these two layers; it is required for maintenance DNA methylation at hemimethylated CpG sites, which are specifically recognized through its SRA domain and also interacts with histone H3 trimethylated on lysine 9 (H3K9me3) in an unspecified manner. Here we show that UHRF1 contains a tandem Tudor domain (TTD) that recognizes H3 tail peptides with the heterochromatin-associated modification state of trimethylated lysine 9 and unmodified lysine 4 (H3K4me0/K9me3).

View Article and Find Full Text PDF

Dnmt1 (DNA methyltransferase 1) is the principal enzyme responsible for maintenance of cytosine methylation at CpG dinucleotides in the mammalian genome. The N-terminal replication focus targeting sequence (RFTS) domain of Dnmt1 has been implicated in subcellular localization, protein association, and catalytic function. However, progress in understanding its function has been limited by the lack of assays for and a structure of this domain.

View Article and Find Full Text PDF

E2-25K/Hip2 is an unusual ubiquitin-conjugating enzyme that interacts with the frameshift mutant of ubiquitin B (UBB(+1)) and has been identified as a crucial factor regulating amyloid-β neurotoxicity. To study the structural basis of the neurotoxicity mediated by the E2-25K-UBB(+1) interaction, we determined the three-dimensional structures of UBB(+1), E2-25K and the E2-25K/ubiquitin, and E2-25K/UBB(+1) complex. The structures revealed that ubiquitin or UBB(+1) is bound to E2-25K via the enzyme MGF motif and residues in α9 of the enzyme.

View Article and Find Full Text PDF

Plasma sex hormone-binding globulin (SHBG) regulates the access of androgens and estrogens to their target tissues and cell types. An SHBG homologue, known as the androgen-binding protein, is expressed in Sertoli cells of many mammalians, but testicular expression of human SHBG is restricted to germ cells. The primary structure of SHBG comprises tandem laminin G-like (LG) domains.

View Article and Find Full Text PDF

Epigenetic inheritance in mammals is characterized by high-fidelity replication of CpG methylation patterns during development. UHRF1 (also known as ICBP90 in humans and Np95 in mouse) is an E3 ligase important for the maintenance of global and local DNA methylation in vivo. The preferential affinity of UHRF1 for hemi-methylated DNA over symmetrically methylated DNA by means of its SET and RING-associated (SRA) domain and its association with the maintenance DNA methyltransferase 1 (DNMT1) suggests a role in replication of the epigenetic code.

View Article and Find Full Text PDF

We tested the general applicability of in situ proteolysis to form protein crystals suitable for structure determination by adding a protease (chymotrypsin or trypsin) digestion step to crystallization trials of 55 bacterial and 14 human proteins that had proven recalcitrant to our best efforts at crystallization or structure determination. This is a work in progress; so far we determined structures of 9 bacterial proteins and the human aminoimidazole ribonucleotide synthetase (AIRS) domain.

View Article and Find Full Text PDF

Ubiquitin-specific protease 8 (USP8) hydrolyzes mono and polyubiquitylated targets such as epidermal growth factor receptors and is involved in clathrin-mediated internalization. In 1182 residues, USP8 contains multiple domains, including coiled-coil, rhodanese, and catalytic domains. We report the first high-resolution crystal structures of these domains and discuss their implications for USP8 function.

View Article and Find Full Text PDF

Sex hormone-binding globulin (SHBG) binds steroids in the blood but is also present in the extravascular compartments of some tissues. Mice expressing a human SHBG transgene in the liver have human SHBG in their blood. In these animals, human SHBG accumulates within the stromal matrix of the endometrium and epididymis.

View Article and Find Full Text PDF

Sex hormone binding globulin (SHBG) binds and transports androgens and estrogens in the blood of vertebrate species including fish. We have used oligonucleotide primers corresponding to highly conserved regions of the SHBG coding sequences within the zebrafish and fugufish genomes to obtain a 1528 bp cDNA encoding SHBG from tissue RNA extracts from the European sea bass. Amino-terminal sequence analysis of recombinant sea bass SHBG indicated that its deduced precursor polypeptide includes a 35-residue secretion signal polypeptide, and the 361-residue mature sea bass SHBG sequence exhibits 45-67% sequence identity with SHBGs from other fish species that have been determined directly (for zebrafish) or deduced (for rainbow trout, medaka and fugufish) from sequences within public databases.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have characterized the zebrafish SHBG gene and protein, discovering that it shares 22-27% similarity with mammalian SHBG and 41% with fugufish SHBG.
  • The mature zebrafish SHBG protein is around 356 amino acids long, forms a homodimer, and exhibits high specificity for sex steroids.
  • SHBG mRNA is first detected in zebrafish larvae and is localized in the liver, gut, and testis of adults, suggesting a potential new regulatory role in sex steroid action within the gut.
View Article and Find Full Text PDF

In humans, sex hormone-binding globulin (SHBG) binds and transports the biologically most important androgens and estrogens in the blood, and regulates the access of these steroids to their targets tissues. In addition to binding sex steroids, SHBG has specific binding sites for divalent cations including calcium and zinc. Zinc binding to a site at the entrance of the steroid-binding pocket in human SHBG has been shown to reduce its affinity for estrogens, while having no impact on the binding of C19 steroids.

View Article and Find Full Text PDF

In a crystal structure of the amino-terminal laminin G-like domain of human sex hormone-binding globulin (SHBG), the biologically active estrogen metabolite, 2-methoxyestradiol (2-MeOE2), binds in the same orientation as estradiol. The high affinity of SHBG for 2-MeOE2 relies primarily on hydrogen bonding between the hydroxyl at C-3 of 2-MeOE2 and Asp(65) and an interaction between the methoxy group at C-2 and the amido group of Asn(82). Accommodation of the 2-MeOE2 methoxy group causes an outward displacement of residues Ser(128)-Pro(130), which appears to disorder and displace the loop region (Leu(131)-His(136)) that covers the steroid-binding site.

View Article and Find Full Text PDF

A-ring fluorination of estradiol (ES) at position 2 or 4 decreases the rate of metabolism by blocking the formation of catechol estrogens, one of the major metabolic pathways of ES. We postulate that adding a 2- or 4-fluoro substituent to 16alpha-[18F]fluoroestradiol (FES), a positron emission tomography (PET) radiopharmaceutical used for estrogen receptor (ER) imaging, should prolong its blood circulation time, and thus, improve its localization in ER-rich target tissues. On such account, we prepared a series of FES derivatives substituted with a fluorine atom at C2 or C4, with or without an 11beta-OMe group, and we tested their binding affinities for the ER and different serum proteins including rat alphafetoprotein (AFP) and human sex hormone-binding globulin (SHBG).

View Article and Find Full Text PDF

The amino-terminal laminin G-like domain of human sex hormone-binding globulin (SHBG) contains a single high affinity steroid-binding site. Crystal structures of this domain in complex with several different steroid ligands have revealed that estradiol occupies the SHBG steroid-binding site in an opposite orientation when compared with 5 alpha-dihydrotestosterone or C19 androgen metabolites (5 alpha-androstan-3 beta,17 beta-diol and 5 alpha-androstan-3 beta,17 alpha-diol) or the synthetic progestin levonorgestrel. Substitution of specific residues within the SHBG steroid-binding site confirmed that Ser(42) plays a key role in determining high affinity interactions by hydrogen bonding to functional groups at C3 of the androstanediols and levonorgestrel and the hydroxyl at C17 of estradiol.

View Article and Find Full Text PDF

The crystal structure of human sex hormone-binding globulin (SHBG) has revealed how 5alpha-dihydrotestosterone intercalates between the two seven-stranded beta-sheets of its amino-terminal laminin G-like domain. However, a region of disorder (residues 130 to 135 of SHBG) was identified together with a zinc-binding site in immediate proximity to the steroid. It has been important to resolve the structure of this region because previous studies have suggested that these residues may contribute to steroid binding directly.

View Article and Find Full Text PDF