Publications by authors named "George Aghajanian"

The discovery of the rapid-acting antidepressant effects of ketamine has 1) led to a paradigm shift in our perception of what is possible in treating severe depression; 2) spurred a wave of basic, translation, and clinical research; and 3) provided an unprecedented investigational tool to conduct longitudinal mechanistic studies that may capture behavioral changes as complex as clinical remission and relapse within hours and days of treatment. Unfortunately, these advances did not yet translate into clinical biomarkers or novel treatments, beyond ketamine. In contrast to slow-acting antidepressants, in which targeting monoaminergic receptors identified several efficacious drugs with comparable mechanisms, the focus on the receptor targets of ketamine has failed in several clinical trials over the past decade.

View Article and Find Full Text PDF

GLYX-13 is a putative NMDA receptor modulator with glycine-site partial agonist properties that produces rapid antidepressant effects, but without the psychotomimetic side effects of ketamine. Studies were conducted to examine the molecular, cellular, and behavioral actions of GLYX-13 to further characterize the mechanisms underlying the antidepressant actions of this agent. The results demonstrate that a single dose of GLYX-13 rapidly activates the mTORC1 pathway in the prefrontal cortex (PFC), and that infusion of the selective mTORC1 inhibitor rapamycin into the medial PFC (mPFC) blocks the antidepressant behavioral actions of GLYX-13, indicating a requirement for mTORC1 similar to ketamine.

View Article and Find Full Text PDF

Depression is a common, devastating illness. Current pharmacotherapies help many patients, but high rates of a partial response or no response, and the delayed onset of the effects of antidepressant therapies, leave many patients inadequately treated. However, new insights into the neurobiology of stress and human mood disorders have shed light on mechanisms underlying the vulnerability of individuals to depression and have pointed to novel antidepressants.

View Article and Find Full Text PDF

Ketamine produces rapid and sustained antidepressant actions in depressed patients, but the precise cellular mechanisms underlying these effects have not been identified. Here we determined if modulation of neuronal activity in the infralimbic prefrontal cortex (IL-PFC) underlies the antidepressant and anxiolytic actions of ketamine. We found that neuronal inactivation of the IL-PFC completely blocked the antidepressant and anxiolytic effects of systemic ketamine in rodent models and that ketamine microinfusion into IL-PFC reproduced these behavioral actions of systemic ketamine.

View Article and Find Full Text PDF

A single sub-anesthetic dose of ketamine, a short-acting NMDA receptor blocker, induces a rapid and prolonged antidepressant effect in treatment-resistant major depression. In animal models, ketamine (24 h) reverses depression-like behaviors and associated deficits in excitatory postsynaptic currents (EPSCs) generated in apical dendritic spines of layer V pyramidal cells of medial prefrontal cortex (mPFC). However, little is known about the effects of ketamine on basal dendrites.

View Article and Find Full Text PDF

Major depressive disorder (MDD) affects up to 17% of the population, causing profound personal suffering and economic loss. Clinical and preclinical studies have revealed that prolonged stress and MDD are associated with neuronal atrophy of cortical and limbic brain regions, but the molecular mechanisms underlying these morphological alterations have not yet been identified. Here, we show that stress increases levels of REDD1 (regulated in development and DNA damage responses-1), an inhibitor of mTORC1 (mammalian target of rapamycin complex-1; ref.

View Article and Find Full Text PDF

Although the prefrontal cortex influences motivated behavior, its role in food intake remains unclear. Here, we demonstrate a role for D1-type dopamine receptor-expressing neurons in the medial prefrontal cortex (mPFC) in the regulation of feeding. Food intake increases activity in D1 neurons of the mPFC in mice, and optogenetic photostimulation of D1 neurons increases feeding.

View Article and Find Full Text PDF

Background: Clinical studies report that scopolamine, an acetylcholine muscarinic receptor antagonist, produces rapid antidepressant effects in depressed patients, but the mechanisms underlying the therapeutic response have not been determined. The present study examines the role of the mammalian target of rapamycin complex 1 (mTORC1) and synaptogenesis, which have been implicated in the rapid actions of N-methyl-D-aspartate receptor antagonists.

Methods: The influence of scopolamine on mTORC1 signaling was determined by analysis of the phosphorylated and activated forms of mTORC1 signaling proteins in the prefrontal cortex (PFC).

View Article and Find Full Text PDF

A single dose of the short-acting NMDA antagonist ketamine produces rapid and prolonged antidepressant effects in treatment-resistant patients with major depressive disorder (MDD), which are thought to occur via restoration of synaptic connectivity. However, acute dissociative side effects and eventual fading of antidepressant effects limit widespread clinical use of ketamine. Recent studies in medial prefrontal cortex (mPFC) show that the synaptogenic and antidepressant-like effects of a single standard dose of ketamine in rodents are dependent upon activation of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) signaling pathway together with inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3), which relieves its inhibitory in influence on mTOR.

View Article and Find Full Text PDF

Basic and clinical studies demonstrate that depression is associated with reduced size of brain regions that regulate mood and cognition, including the prefrontal cortex and the hippocampus, and decreased neuronal synapses in these areas. Antidepressants can block or reverse these neuronal deficits, although typical antidepressants have limited efficacy and delayed response times of weeks to months. A notable recent discovery shows that ketamine, a N-methyl-D-aspartate receptor antagonist, produces rapid (within hours) antidepressant responses in patients who are resistant to typical antidepressants.

View Article and Find Full Text PDF

Background: Knock-in mice with the common human brain-derived neurotrophic factor (BDNF) Val66Met polymorphism have impaired trafficking of BDNF messenger RNA to dendrites. It was hypothesized, given evidence that local synapse formation is dependent on dendritic translation of BDNF messenger RNA, that loss-of-function Met allele mice would show synaptic deficits both at baseline and in response to ketamine, an N-methyl-D-aspartate antagonist that stimulates synaptogenesis in prefrontal cortex (PFC).

Methods: Whole-cell recordings from layer V medial PFC pyramidal cells in brain slices were combined with two-photon laser scanning for analysis of wildtype, Val/Met, and Met/Met mice both at baseline and in response to a low dose of ketamine.

View Article and Find Full Text PDF

Currently available medications have significant limitations, most notably low response rate and time lag for treatment response. Recent clinical studies have demonstrated that ketamine, an NMDA receptor antagonist produces a rapid antidepressant response (within hours) and is effective in treatment resistant depressed patients. Molecular and cellular studies in rodent models demonstrate that ketamine rapidly increases synaptogenesis, including increased density and function of spine synapses, in the prefrontal cortex (PFC).

View Article and Find Full Text PDF

Background: Despite widely reported clinical and preclinical studies of rapid antidepressant actions of glutamate N-methyl-D-aspartate (NMDA) receptor antagonists, there has been very little work examining the effects of these drugs in stress models of depression that require chronic administration of antidepressants or the molecular mechanisms that could account for the rapid responses.

Methods: We used a rat 21-day chronic unpredictable stress (CUS) model to test the rapid actions of NMDA receptor antagonists on depressant-like behavior, neurochemistry, and spine density and synaptic function of prefrontal cortex neurons.

Results: The results demonstrate that acute treatment with the noncompetitive NMDA channel blocker ketamine or the selective NMDA receptor 2B antagonist Ro 25-6981 rapidly ameliorates CUS-induced anhedonic and anxiogenic behaviors.

View Article and Find Full Text PDF

The rapid antidepressant response after ketamine administration in treatment-resistant depressed patients suggests a possible new approach for treating mood disorders compared to the weeks or months required for standard medications. However, the mechanisms underlying this action of ketamine [a glutamate N-methyl-D-aspartic acid (NMDA) receptor antagonist] have not been identified. We observed that ketamine rapidly activated the mammalian target of rapamycin (mTOR) pathway, leading to increased synaptic signaling proteins and increased number and function of new spine synapses in the prefrontal cortex of rats.

View Article and Find Full Text PDF

The lateral hypothalamus and the nucleus accumbens shell (AcbSh) are brain regions important for food intake. The AcbSh contains high levels of receptor for melanin-concentrating hormone (MCH), a lateral hypothalamic peptide critical for feeding and metabolism. MCH receptor (MCHR1) activation in the AcbSh increases food intake, while AcbSh MCHR1 blockade reduces feeding.

View Article and Find Full Text PDF

Introduction: Dysregulation of neuronal networks has been suggested to underlie the cognitive and perceptual abnormalities observed schizophrenia.

Discussions: An in vitro model of psychosis is proposed based on the two different approaches to cause aberrant network activity in layer V pyramidal cells of prefrontal brain slices: (1) psychedelic hallucinogens such as lysergic acid diethylamide and (2) minimal GABA(A) receptor antagonism, modeling the GABA interneuron deficit in schizophrenia. A test of this model would be to determine if drugs that normalize aberrant networks in brain slices have efficacy in the treatment of schizophrenia.

View Article and Find Full Text PDF

Background: Opiate dependence is a result of adaptive changes in signal transduction networks in several brain regions. Noradrenergic neurons of the locus coeruleus (LC) have provided a useful model system in which to understand the molecular basis of these adaptive changes. One of most robust signaling adaptations to repeated morphine exposure in this brain region is upregulation of adenylyl cyclase (AC) activity.

View Article and Find Full Text PDF

Morphological studies show that repeated restraint stress leads to selective atrophy in the apical dendritic field of pyramidal cells in the medial prefrontal cortex (mPFC). However, the functional consequence of this selectivity remains unclear. The apical dendrite of layer V pyramidal neurons in the mPFC is a selective locus for the generation of increased excitatory postsynaptic currents (EPSCs) by serotonin (5-HT) and hypocretin (orexin).

View Article and Find Full Text PDF

Diminished connectivity between midline-intralaminar thalamic nuclei and prefrontal cortex has been suggested to contribute to cognitive deficits that are detectable even in early stages of schizophrenia. The midline-intralaminar relay cells comprise the final link in the ascending arousal pathway and are selectively excited by the wake-promoting peptides hypocretin 1 and 2 (orexin A and B). This excitation occurs both at the level of the relay cell bodies and their axon terminals within prefrontal cortex.

View Article and Find Full Text PDF

Serotonin [5-hydroxytryptamine (5-HT)] neurotransmission in the central nervous system modulates depression and anxiety-related behaviors in humans and rodents, but the responsible downstream receptors remain poorly understood. We demonstrate that global disruption of 5-HT2A receptor (5HT2AR) signaling in mice reduces inhibition in conflict anxiety paradigms without affecting fear-conditioned and depression-related behaviors. Selective restoration of 5HT2AR signaling to the cortex normalized conflict anxiety behaviors.

View Article and Find Full Text PDF

The transcription factor cAMP response element-binding protein (CREB) is implicated in mediating the actions of chronic morphine in the locus ceruleus (LC), but direct evidence to support such a role is limited. Here, we investigated the influence of CREB on LC neuronal activity and opiate withdrawal behaviors by selectively manipulating CREB activity in the LC using viral vectors encoding genes for CREBGFP (wild-type CREB tagged with green fluorescent protein), caCREBGFP (a constitutively active CREB mutant), dnCREBGFP (a dominant-negative CREB mutant), or GFP alone as a control. Our results show that in vivo overexpression of CREBGFP in the LC significantly aggravated particular morphine withdrawal behaviors, whereas dnCREBGFP expression attenuated these behaviors.

View Article and Find Full Text PDF

BDNF is thought to provide critical trophic support for serotonin neurons. In order to determine postnatal effects of BDNF on the serotonin system, we examined a line of conditional mutant mice that have normal brain content of BDNF during prenatal development but later depletion of this neurotrophin in the postnatal period. These mice show a behavioral phenotype that suggests serotonin dysregulation.

View Article and Find Full Text PDF

Psychedelic hallucinogens (eg LSD or DOI) induce disturbances of mood, perception, and cognition through stimulation of serotonin 5-HT2A receptors. While these drugs are not proconvulsant, they have been shown by microdialysis to increase extracellular glutamate in the prefrontal cortex. Electrophysiological studies in the rat prefrontal slice have shown that both LSD and DOI enhance a prolonged, late wave of glutamate release onto layer V pyramidal neurons after an electrical stimulus.

View Article and Find Full Text PDF