Building artificial neurons and synapses is key to achieving the promise of energy efficiency and acceleration envisioned for brain-inspired information processing. Emulating the spiking behavior of biological neurons in physical materials requires precise programming of conductance nonlinearities. Strong correlated solid-state compounds exhibit pronounced nonlinearities such as metal-insulator transitions arising from dynamic electron-electron and electron-lattice interactions.
View Article and Find Full Text PDFStereoactive electron lone pairs derived from filled 5/6s states of p-block cations are an intriguing electronic and geometric structure motif that have been exploited for diverse applications such as thermoelectrics, thermochromics, photocatalysis, and nonlinear optics. Layered trivanadates are dynamic intercalation hosts, where the insertion of cations can be used to tune electron correlation, charge localization, and magnetic ordering. However, the interaction of 5/6s stereoactive electron lone pairs with layered trivanadates remains unexplored.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
June 2015
In the structure of the title triorganophosphine oxide, C16H19OP, the P-O bond is 1.490 (1) Å. The P atom has a distorted tetrahedral geometry.
View Article and Find Full Text PDF