Metastatic melanoma poses significant challenges as a highly lethal disease. Despite the success of molecular targeting using BRAF inhibitors (BRAFis) and immunotherapy, the emergence of early recurrence remains an issue and there is the need for novel therapeutic approaches. This study aimed at creating a targeted delivery system for the oncosuppressor microRNA 126 (miR126) and testing its effectiveness in combination with a phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (AKT) inhibitor for treating metastatic melanoma resistant to BRAFis.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
November 2023
Background: Studies have shown that cancer stemness and the endoplasmic reticulum (ER) stress response are inversely regulated in colorectal cancer (CRC), but the mechanism has not been fully clarified. Long noncoding RNAs (lncRNAs) play key roles in cancer progression and metastasis. In this study we investigated lncRNA 01534 (LINC01534) as a possible modulator between cancer stemness and ER stress response.
View Article and Find Full Text PDFThe view of long noncoding RNAs as nonfunctional "garbage" has been definitely outdated by the large body of evidence indicating this class of ncRNAs as "golden junk", especially in precision oncology. Indeed, in light of their oncogenic role and the higher expression in multiple cancer types compared with paired adjacent tissues, the clinical interest for lncRNAs as diagnostic and/or prognostic biomarkers has been rapidly increasing. The emergence of large-scale sequencing technologies, their subsequent diffusion even in small research and clinical centers, the technological advances for the detection of low-copy lncRNAs in body fluids, coupled to the huge reduction of operating costs, have nowadays made possible to rapidly and comprehensively profile them in multiple tumors and large cohorts.
View Article and Find Full Text PDFObjective: Many cancers engage embryonic genes for rapid growth and evading the immune system. SOX9 has been upregulated in many tumours, yet the role of SOX9 in mediating immunosuppressive tumour microenvironment is unclear. Here, we aim to dissect the role of SOX9-mediated cancer stemness attributes and immunosuppressive microenvironment in advanced gastric adenocarcinoma (GAC) for novel therapeutic discoveries.
View Article and Find Full Text PDFStem cells are at the basis of tissue homeostasis, hematopoiesis and various regenerative processes. Epigenetic changes in their somatically imprinted genes, prolonged exposure to mutagens/carcinogens or alteration of their niche can lead to the development of an enabling environment for tumor growth and progression. The involvement of stem cells in both health and disease becomes even more compelling with ontogeny as embryonic and extraembryonic stem cells which persist into adulthood in well established and specific niche may have distinct implications in tumorigenesis.
View Article and Find Full Text PDFCell Mol Life Sci
July 2022
The RNA-binding protein ALYREF (THOC4) is involved in transcriptional regulation and nuclear mRNA export, though its role and molecular mode of action in breast carcinogenesis are completely unknown. Here, we identified high ALYREF expression as a factor for poor survival in breast cancer patients. ALYREF significantly influenced cellular growth, apoptosis and mitochondrial energy metabolism in breast cancer cells as well as breast tumorigenesis in orthotopic mouse models.
View Article and Find Full Text PDFUltraconserved regions (UCRs) are 481 genome segments, with length longer than 200 bp, that are 100% conserved among humans, mice, and rats. The majority of UCRs are transcriptionally active (T-UCRs) as many of them produce non-coding RNAs. In a previous study, we evaluated the expression level of T-UCRs in breast cancer (BC) patients and found that 63% of transcripts correlated with some clinical and/or molecular parameter of BC.
View Article and Find Full Text PDFColon cancer-associated transcript 2 (CCAT2) is an intensively studied lncRNA with important regulatory roles in cancer. As such, cumulative studies indicate that CCAT2 displays a high functional versatility due to its direct interaction with multiple RNA binding proteins, transcription factors, and other species of non-coding RNA, especially microRNA. The definitory mechanisms of CCAT2 are its role as a regulator of the TCF7L2 transcription factor, enhancer of MYC expression, and activator of the WNT/β-catenin pathway, as well as a role in promoting and maintaining chromosome instability through the BOP1-AURKB pathway.
View Article and Find Full Text PDFThe human genome contains 481 ultraconserved regions (UCRs), which are genomic stretches of over 200 base pairs conserved among human, rat, and mouse. The majority of these regions are transcriptionally active (T-UCRs), and several have been found to be differentially expressed in tumours. Some T-UCRs have been functionally characterized, but of those few have been associated to breast cancer (BC).
View Article and Find Full Text PDFObjective: Prognosis of patients with advanced oesophagogastric adenocarcinoma (mEGAC) is poor and molecular determinants of shorter or longer overall survivors are lacking. Our objective was to identify molecular features and develop a prognostic model by profiling the genomic features of patients with mEGAC with widely varying outcomes.
Design: We profiled 40 untreated mEGACs (20 shorter survivors <13 months and 20 longer survivors >36 months) with whole-exome sequencing (WES) and RNA sequencing and performed an integrated analysis of exome, transcriptome, immune profile and pathological phenotypes to identify the molecular determinants, developing an integrated model for prognosis and comparison with The Cancer Genome Atlas (TCGA) cohorts.
Objective: Peritoneal carcinomatosis (PC; malignant ascites or implants) occurs in approximately 45% of advanced gastric adenocarcinoma (GAC) patients and associated with a poor survival. The molecular events leading to PC are unknown. The yes-associated protein 1 () oncogene has emerged in many tumour types, but its clinical significance in PC is unclear.
View Article and Find Full Text PDFOne of the most unexpected discoveries in molecular oncology, in the last decades, was the identification of a new layer of protein coding gene regulation by transcripts that do not codify for proteins, the non-coding RNAs. These represent a heterogeneous category of transcripts that interact with many types of genetic elements, including regulatory DNAs, coding and other non-coding transcripts and directly to proteins. The final outcome, in the malignant context, is the regulation of any of the cancer hallmarks.
View Article and Find Full Text PDFHematol Transfus Cell Ther
January 2020
Aberrant expression of long non-coding RNAs (lncRNAs) has been detected in several types of cancer, including acute lymphoblastic leukemia (ALL), but lncRNA mapped on transcribed ultraconserved regions (T-UCRs) are little explored. The T-UCRs uc.112, uc.
View Article and Find Full Text PDFObjective: To investigate the function of a novel primate-specific long non-coding RNA (lncRNA), named FLANC, based on its genomic location (co-localised with a pyknon motif), and to characterise its potential as a biomarker and therapeutic target.
Design: FLANC expression was analysed in 349 tumours from four cohorts and correlated to clinical data. In a series of multiple in vitro and in vivo models and molecular analyses, we characterised the fundamental biological roles of this lncRNA.
Anaplastic thyroid carcinoma (ATC) represents one the most aggressive neoplasias in humans, and, nowadays, limited advances have been made to extend the survival and reduce the mortality of ATC. Thus, the identification of molecular mechanism underlying its progression is needed. Here, we evaluated the long non-coding RNA (lncRNA) expression profile of nine ATC in comparison with five normal thyroid tissues by a lncRNA microarray.
View Article and Find Full Text PDFUltraconserved elements (UCEs) are among the most popular DNA markers for phylogenomic analysis. In at least three of five placental mammalian genomes (human, dog, cow, mouse, and rat), 2189 UCEs of at least 200 bp in length that are identical have been identified. Most of these regions have not yet been functionally annotated, and their associations with diseases remain largely unknown.
View Article and Find Full Text PDFThe discovery of immune checkpoint molecules as important regulators of immune responses in healthy individuals as well as immune escape of malignant tumours has led to profound changes in understanding, research and treatment of human cancer. Especially the introduction of immune checkpoint inhibitors in cancer therapy has set anti-cancer therapy on a novel level. With increasing experience of approved CTLA-4 and PD1/PD-L1 inhibitors and the evolution of novel immune checkpoint molecules from pre-clinical models to clinical trials, mechanisms of the regulation of these immune system guiding factors, are of paramount importance to overcome mechanisms of resistance.
View Article and Find Full Text PDFThe last two decades of cancer research have been devoted in two directions: (1) understanding the mechanism of carcinogenesis for an effective treatment, and (2) improving cancer prevention and screening for early detection of the disease. This last aspect has been developed, especially for certain types of cancers, thanks also to the introduction of new concepts such as liquid biopsies and precision medicine. In this context, there is a growing interest in the application of alternative and noninvasive methodologies to search for cancer biomarkers.
View Article and Find Full Text PDFObjective: Peritoneal carcinomatosis (PC) occurs frequently in patients with gastric adenocarcinoma (GAC) and confers a poor prognosis. Multiplex profiling of primary GACs has been insightful but the underpinnings of PC's development/progression remain largely unknown. We characterised exome/transcriptome/immune landscapes of PC cells from patients with GAC aiming to identify novel therapeutic targets.
View Article and Find Full Text PDFBackground: Non-coding RNAs and especially microRNAs have been discovered to act as master regulators of cancer initiation and progression. The aim of our study was to discover and characterize the function of yet functionally uncharacterized microRNAs in human breast carcinogenesis.
Methods: In an unbiased approach, we utilized an established model system for breast cancer (BC) stem cell formation ("mammosphere assay") to identify whole miRNome alterations in breast carcinogenesis.
Ameloblastoma and adenomatoid odontogenic tumor (AOT) are jaw tumors derived from the teeth forming apparatus. While ameloblastoma is a destructive, debilitating lesion, with conventional surgical treatment leading to facial deformity and morbodities, AOT shows indolent clinical behavior. The underlying molecular mechanisms associated with their biological behavior are unknown.
View Article and Find Full Text PDFDespite substantial progress in oncology, lung cancer remains the number one malignancy in terms of both incidence and mortality rates, and there thus remains an urgent need for new therapeutic alternatives. MicroRNA (miRNA) have an important role in cancer initiation and progression due to their capacity to interfere with transcriptional signaling and regulate key cellular processes. miR-181a and miR-181b (miR-181a/b), which are located on chromosomes 1 and 9, are pathologically expressed in the tumor tissue and plasma of patients diagnosed with lung cancer.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are synonymous with post-transcriptional repression of target genes. A number of studies, however, have reported miRNAs functioning outside this paradigm, and this SnapShot outlines these unconventional ways in which miRNAs can exert regulatory functions. To view this SnapShot, open or download the PDF.
View Article and Find Full Text PDF