Publications by authors named "George A O Toole"

A mini-Tn5Cm insertion has been identified that significantly reduced the amount of an extracellular activating signal for a lacZ fusion (cma37::lacZ) in Providencia stuartii. The transposon insertion was located immediately upstream of an open reading frame encoding a putative CysE ortholog. The CysE enzyme, serine acetyltransferase, catalyzes the conversion of serine to O-acetyl-L-serine (OAS).

View Article and Find Full Text PDF

Current models of biofilm formation by Pseudomonas aeruginosa propose that (i) planktonic cells become surface associated in a monolayer, (ii) surface-associated cells form microcolonies by clonal growth and/or aggregation, (iii) microcolonies transition to a mature biofilm comprised of exopolysaccharide-encased macrocolonies, and (iv) cells exit the mature biofilm and reenter the planktonic state. Here we report a new class of P. aeruginosa biofilm mutant that defines the transition from reversible to irreversible attachment and is thus required for monolayer formation.

View Article and Find Full Text PDF

A temperate, type IV pilus-dependent, double-stranded DNA bacteriophage named DMS3 was isolated from a clinical strain of Pseudomonas aeruginosa. A clear-plaque variant of this bacteriophage was isolated. DMS3 is capable of mediating generalized transduction within and between P.

View Article and Find Full Text PDF

Biofilms are surface-attached microbial communities with characteristic architecture and phenotypic and biochemical properties distinct from their free-swimming, planktonic counterparts. One of the best-known of these biofilm-specific properties is the development of antibiotic resistance that can be up to 1,000-fold greater than planktonic cells. We report a genetic determinant of this high-level resistance in the Gram-negative opportunistic pathogen, Pseudomonas aeruginosa.

View Article and Find Full Text PDF

We report the identification of an ATP-binding cassette (ABC) transporter and an associated large cell-surface protein that are required for biofilm formation by Pseudomonas fluorescens WCS365. The genes coding for these proteins are designated lap for large adhesion protein. The LapA protein, with a predicted molecular weight of approximately 900 kDa, is found to be loosely associated with the cell surface and present in the culture supernatant.

View Article and Find Full Text PDF

The bacterium Pseudomonas aeruginosa causes chronic respiratory infections in cystic fibrosis (CF) patients. Such infections are extremely difficult to control because the bacteria exhibit a biofilm-mode of growth, rendering P. aeruginosa resistant to antibiotics and phagocytic cells.

View Article and Find Full Text PDF

In response to certain environmental signals, bacteria will differentiate from an independent free-living mode of growth and take up an interdependent surface-attached existence. These surface-attached microbial communities are known as biofilms. In flowing systems where nutrients are available, biofilms can develop into elaborate three-dimensional structures.

View Article and Find Full Text PDF