Publications by authors named "George A Kevrekidis"

Equations of State model relations between thermodynamic variables and are ubiquitous in scientific modelling, appearing in modern day applications ranging from Astrophysics to Climate Science. The three desired properties of a general Equation of State model are adherence to the Laws of Thermodynamics, incorporation of phase transitions, and multiscale accuracy. Analytic models that adhere to all three are hard to develop and cumbersome to work with, often resulting in sacrificing one of these elements for the sake of efficiency.

View Article and Find Full Text PDF

Deriving closed-form analytical expressions for reduced-order models, and judiciously choosing the closures leading to them, has long been the strategy of choice for studying phase- and noise-induced transitions for agent-based models (ABMs). In this paper, we propose a data-driven framework that pinpoints phase transitions for an ABM-the Desai-Zwanzig model-in its mean-field limit, using a smaller number of variables than traditional closed-form models. To this end, we use the manifold learning algorithm Diffusion Maps to identify a parsimonious set of data-driven latent variables, and we show that they are in one-to-one correspondence with the expected theoretical order parameter of the ABM.

View Article and Find Full Text PDF

We present a data-driven approach to characterizing nonidentifiability of a model's parameters and illustrate it through dynamic as well as steady kinetic models. By employing Diffusion Maps and their extensions, we discover the minimal combinations of parameters required to characterize the output behavior of a chemical system: a set of for the model. Furthermore, we introduce and use a Conformal Autoencoder Neural Network technique, as well as a kernel-based Jointly Smooth Function technique, to disentangle the parameter combinations that do not affect the output behavior from the ones that do.

View Article and Find Full Text PDF