The voltage-gated potassium (Kv) 1.3 channel is widely regarded as a therapeutic target for immunomodulation in autoimmune diseases. ShK-186, a selective inhibitor of Kv1.
View Article and Find Full Text PDFThe IUPHAR database (IUPHAR-DB) integrates peer-reviewed pharmacological, chemical, genetic, functional and anatomical information on the 354 nonsensory G protein-coupled receptors (GPCRs), 71 ligand-gated ion channel subunits and 141 voltage-gated-like ion channel subunits encoded by the human, rat and mouse genomes. These genes represent the targets of approximately one-third of currently approved drugs and are a major focus of drug discovery and development programs in the pharmaceutical industry. IUPHAR-DB provides a comprehensive description of the genes and their functions, with information on protein structure and interactions, ligands, expression patterns, signaling mechanisms, functional assays and biologically important receptor variants (e.
View Article and Find Full Text PDFWe investigated the role of the 3' non-coding region of a mouse voltage-gated potassium channel mRNA (mKv1.4 mRNA) in post-transcriptional regulation of gene expression. In contrast to an earlier report from studies carried out in Xenopus oocytes, we found that 3' non-coding region sequences of mKv1.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2006
Autoreactive memory T lymphocytes are implicated in the pathogenesis of autoimmune diseases. Here we demonstrate that disease-associated autoreactive T cells from patients with type-1 diabetes mellitus or rheumatoid arthritis (RA) are mainly CD4+ CCR7- CD45RA- effector memory T cells (T(EM) cells) with elevated Kv1.3 potassium channel expression.
View Article and Find Full Text PDFThis series of reviews examines the effect of differing tissue environments on the activity and functional capacity of cells in the immune system. From their origins as hematopoietic stem cells, throughout their development and as mature cells, cells of the immune system find themselves in distinct and highly specialized niches, and contact with antigen or inflammatory signals changes their phenotype, activity and trafficking. Two-photon microscopy has provided the first direct observations of living cells and their activation choreography in the tissue environment and will no doubt continue to provide greater understanding of cellular dynamics and immune function.
View Article and Find Full Text PDFThe voltage-gated Kv1.3 K(+) channel is a novel target for immunomodulation of autoreactive effector memory T (T(EM)) cells that play a major role in the pathogenesis of autoimmune diseases. We describe the characterization of the novel peptide ShK(L5) that contains l-phosphotyrosine linked via a nine-atom hydrophilic linker to the N terminus of the ShK peptide from the sea anemone Stichodactyla helianthus.
View Article and Find Full Text PDFThe approximately 1.2-kb 5'-noncoding region (5'-NCR) of mRNA species encoding mouse Kv1.4, a member of the Shaker-related subfamily of voltage-gated potassium channels, was shown to mediate internal ribosome entry in cells derived from brain, heart, and skeletal muscle, tissues known to express Kv1.
View Article and Find Full Text PDFThe voltage-gated Kv1.3 channel and the Ca(2+)-activated IKCa1 K(+) channel are expressed in T cells in a distinct pattern that depends on the state of lymphocyte activation and differentiation. The channel phenotype changes during the progression from the resting to the activated cell state and from naïve to effector memory cells, affording promise for specific immunomodulatory actions of K(+) channel blockers.
View Article and Find Full Text PDFCerebellar ataxia, a devastating neurological disease, may be initiated by hyperexcitability of deep cerebellar nuclei (DCN) secondary to loss of inhibitory input from Purkinje neurons that frequently degenerate in this disease. This mechanism predicts that intrinsic DCN hyperexcitability would cause ataxia in the absence of upstream Purkinje degeneration. We report the generation of a transgenic (Tg) model that supports this mechanism of disease initiation.
View Article and Find Full Text PDFThis summary article presents an overview of the molecular relationships among the voltage-gated potassium channels and a standard nomenclature for them, which is derived from the IUPHAR Compendium of Voltage-Gated Ion Channels. The complete Compendium, including data tables for each member of the potassium channel family can be found at http://www.iuphar-db.
View Article and Find Full Text PDFSmall conductance Ca2+-activated K+ channels, products of the SK1-SK3 genes, regulate membrane excitability both within and outside the nervous system. We report the characterization of a SK3 variant (SK3-1C) that differs from SK3 by utilizing an alternative first exon (exon 1C) in place of exon 1A used by SK3, but is otherwise identical to SK3. Quantitative RT-PCR detected abundant expression of SK3-1C transcripts in human lymphoid tissues, skeletal muscle, trachea, and salivary gland but not the nervous system.
View Article and Find Full Text PDFT lymphocytes with unusually high expression of the voltage-gated Kv1.3 channel (Kv1.3(high) cells) have been implicated in the pathogenesis of experimental autoimmune encephalomyelitis, an animal model for multiple sclerosis.
View Article and Find Full Text PDF