Here, we present multivariate quantitative approximations of Banach space valued continuous multivariate functions on a box or by the multivariate normalized, quasi-interpolation, Kantorovich-type and quadrature-type neural network operators. We examine also the case of approximation by iterated operators of the last four types. These approximations are achieved by establishing multidimensional Jackson type inequalities involving the multivariate modulus of continuity of the engaged function or its high-order Fréchet derivatives.
View Article and Find Full Text PDFRev R Acad Cienc Exactas Fis Nat A Mat
November 2022
Here we perform the univariate quantitative approximation, ordinary and fractional, of Banach space valued continuous functions on a compact interval or all the real line by quasi-interpolation Banach space valued neural network operators. These approximations are derived by establishing Jackson type inequalities involving the modulus of continuity of the engaged function or its Banach space valued high order derivative or fractional derivatives. Our operators are defined by using a density function generated by the Richards curve, which is generalized logistic function.
View Article and Find Full Text PDFHere we study the multivariate quantitative constructive approximation of real and complex valued continuous multivariate functions on a box or RN, N∈N, by the multivariate quasi-interpolation sigmoidal neural network operators. The "right" operators for our goal are fully and precisely described. This approximation is derived by establishing multidimensional Jackson type inequalities involving the multivariate modulus of continuity of the engaged function or its high order partial derivatives.
View Article and Find Full Text PDF