Publications by authors named "Georg-Wilhelm Bornkamm"

Mutator phenotypes, a common and largely unexplained attribute of human cancer, might be better understood in mouse tumors containing reporter genes for accurate mutation enumeration and analysis. Previous work on peritoneal plasmacytomas (PCTs) in mice suggested that PCTs have a mutator phenotype caused by Myc-deregulating chromosomal translocations and/or phagocyte-induced mutagenesis due to chronic inflammation. To investigate this hypothesis, we generated PCTs that harbored the transgenic shuttle vector, pUR288, with a lacZ reporter gene for the assessment of mutations in vivo.

View Article and Find Full Text PDF

Mice harboring the activity-attenuated Gpdx(a-m2Neu) allele and also harboring a chromosomally integrated lacZ reporter gene to study mutagenesis (pUR288) were used to demonstrate that moderate glucose 6-phosphate dehydrogenase (G6PD) deficiency causes elevated mutagenesis and endogenous oxidative stress in the spleen. G6PD-deficient spleens with a residual enzyme activity of 22% exhibited a dramatic shift in the mutational pattern of lacZ (4.6-fold increase in the prevalence of recombination mutations of lacZ) together with a 1.

View Article and Find Full Text PDF

Mice that harbored the x-ray-induced low efficiency allele of the major X-linked isozyme of glucose-6-phospate dehydrogenase (G6PD), Gpdx(a-m2Neu), and, in addition, harbored the transgenic shuttle vector for the determination of mutagenesis in vivo, pUR288, were employed to further our understanding of the interdependence of general metabolism, oxidative stress control, and somatic mutagenesis. The Gpdx(a-m2Neu) mutation conferred moderate G6PD deficiency in hemizygous males (Gpdx(a-m2Neu/y)) displaying residual enzyme activities of 27% in red blood cells and 13% in brain (compared to wild-type controls, Gpdx(a/y) males). In spite of this mild phenotype, the brains of G6PD-deficient males exhibited a significant distortion of redox control ( approximately 3-fold decrease in the ratio of reduced glutathione to oxidized glutathione), a considerable accumulation of promutagenic etheno DNA adducts ( approximately 13-fold increase in ethenodeoxyadenosine and approximately 5-fold increase in ethenodeoxycytidine), and a substantial elevation of somatic mutation rates ( approximately 3-fold increase in mutant frequencies in lacZ, the target and reporter gene of mutagenesis in the shuttle vector, pUR288).

View Article and Find Full Text PDF