Publications by authors named "Georg Wondrak"

Article Synopsis
  • BMS-202 is a small molecule with antitumor properties, and this study investigates its physical and chemical characteristics for potential use in topical applications, focusing on uniformity, stability, and safety.
  • Various analytical methods such as SEM, DSC, HSM, Raman, and FTIR were used to analyze BMS-202, revealing its unique morphology, thermal behavior, and chemical consistency, while also measuring moisture content and uptake under different humidity levels.
  • Safety tests on skin cell lines indicated that while high concentrations of BMS-202 are cytotoxic, lower doses are safe and do not compromise skin barrier integrity.
View Article and Find Full Text PDF

The immune checkpoint ligand PD-L1 has emerged as a molecular target for skin cancer therapy and might also hold promise for preventive intervention targeting solar UV light-induced skin damage. In this study, we have explored the role of PD-L1 in acute keratinocytic photodamage testing the effects of small-molecule pharmacological inhibition. Epidermal PD-L1 upregulation in response to chronic photodamage was established using immunohistochemical and proteomic analyses of a human skin cohort, consistent with earlier observations that PD-L1 is upregulated in cutaneous squamous cell carcinoma.

View Article and Find Full Text PDF

An abundant body of scientific studies and regulatory guidelines substantiates antimicrobial efficacy of freshwater chlorination ensuring drinking water safety in large populations worldwide. In contrast to the purposeful use of chlorination ensuring antimicrobial safety of drinking water, only a limited body of research has addressed the molecular impact of chlorinated drinking water exposure on the gut microbiota. Here, for the first time, we have examined the differential effects of drinking water regimens stratified by chlorination agent [inorganic (HOCl) versus chloramine (TCIC)] on the C57BL/6J murine fecal microbiota.

View Article and Find Full Text PDF

Epacadostat (EPA), the most advanced IDO1 inhibitor, in combination with PD-1 checkpoint inhibitor, has failed in a recent Phase III clinical trial for treating metastatic melanoma. Here we report an EPA nanovesicle therapeutic platform (Epacasome) based on chemically attaching EPA to sphingomyelin via an oxime-ester bond highly responsive to hydrolase cleavage. Via clathrin-mediated endocytosis, Epacasome displays higher cellular uptake and enhances IDO1 inhibition and T cell proliferation compared to free EPA.

View Article and Find Full Text PDF

Since its initial discovery as a natural isotopologue of dihydrogen oxide ( H O), extensive research has focused on the biophysical, biochemical, and pharmacological effects of deuterated water ( H O [D O, also referred to as "heavy water"]). Using a panel of cultured human pancreatic ductal adenocarcinoma (PDAC) cells we have profiled (i) D O-induced phenotypic antiproliferative and apoptogenic effects, (ii) redox- and proteotoxicity-directed stress response gene expression, and (iii) phosphoprotein-signaling related to endoplasmic reticulum (ER) and MAP-kinase stress response pathways. Differential array analysis revealed early modulation of stress response gene expression in both BxPC-3 and PANC-1 PDAC cells elicited by D O (90%; ≤6 h; upregulated: HMOX1, NOS2, CYP2E1, CRYAB, DDIT3, NFKBIA, PTGS1, SOD2, PTGS2; downregulated: RUNX1, MYC, HSPA8, HSPA1A) confirmed by independent RT-qPCR analysis.

View Article and Find Full Text PDF

Cellular oxidative stress contributes to solar ultraviolet (UV) radiation-induced skin photoaging and photocarcinogenesis. Light-driven electron and energy transfer reactions involving non-DNA chromophores are a major source of reactive oxygen species (ROS) in skin, and the molecular identity of numerous endogenous chromophores acting as UV-photosensitizers has been explored. Methylglyoxal (MG), a glycolytic byproduct bearing a UV-active α-dicarbonyl-chromophore, is generated under metabolic conditions of increased glycolytic flux, associated with posttranslational protein adduction in human tissue.

View Article and Find Full Text PDF

Freshwater sanitation and disinfection using a variety of chemical entities as chlorination agents is an essential public health intervention ensuring water safety for populations at a global scale. Recently, we have published our observation that the small molecule oxidant, innate immune factor and chlorination agent HOCl antagonize inflammation and photocarcinogenesis in murine skin exposed topically to environmentally relevant concentrations of HOCl. Chlorinated isocyanuric acid derivatives (including the chloramines trichloroisocyanuric acid [TCIC] and dichloroisocyanuric acid [DCIC]) are used worldwide as alternate chlorination agents serving as HOCl precursor and stabilizer compounds ensuring sustained release in aqueous environments including public water systems, recreational pools and residential hot tubs.

View Article and Find Full Text PDF

A multitude of extrinsic environmental factors (referred to in their entirety as the 'skin exposome') impact structure and function of skin and its corresponding cellular components. The complex (i.e.

View Article and Find Full Text PDF

Nonmelanoma skin cancers (NMSCs) are the most common malignancies worldwide and affect more than 5 million people in the United States every year. NMSC is directly linked to the excessive exposure of the skin to solar ultraviolet (UV) rays. The toll-like receptor 4 (TLR4) antagonist, resatorvid (TAK-242), is a novel prototype chemo preventive agent that suppresses the production of inflammation mediators induced by UV exposure.

View Article and Find Full Text PDF

Molecularly targeted therapeutics have revolutionized the treatment of BRAF -driven malignant melanoma, but the rapid development of resistance to BRAF kinase inhibitors (BRAFi) presents a significant obstacle. The use of clinical antimalarials for the investigational treatment of malignant melanoma has shown only moderate promise, attributed mostly to inhibition of lysosomal-autophagic adaptations of cancer cells, but identification of specific antimalarials displaying single-agent antimelanoma activity has remained elusive. Here, we have screened a focused library of clinically used artemisinin-combination therapeutic (ACT) antimalarials for the apoptotic elimination of cultured malignant melanoma cell lines, also examining feasibility of overcoming BRAFi-resistance comparing isogenic melanoma cells that differ only by NRAS mutational status (BRAFi-sensitive A375-BRAF /NRAS vs.

View Article and Find Full Text PDF

The National Cancer Institute (NCI) Division of Cancer Prevention (DCP) convened the "Translational Advances in Cancer Prevention Agent Development (TACPAD) Workshop on Immunomodulatory Agents" as a virtual 2-day workshop on September 13 to 14, 2021. The main goals of this workshop were to foster the exchange of ideas and potentially new collaborative interactions among leading cancer immunoprevention researchers from basic and clinical research and highlight new and emerging trends in immunoprevention. The workshop included an overview of the mechanistic classes of immunomodulatory agents and three sessions covering the gamut from preclinical to clinical studies.

View Article and Find Full Text PDF

BRAF inhibitor (BRAFi) resistance compromises long-term survivorship of patients with malignant melanoma, and mutant NRAS is a major mediator of BRAFi resistance. In this study, employing phenotypic and transcriptomic analysis of isogenic melanoma cells that differ only by NRAS mutational status (BRAFi-sensitive A375-BRAF/NRAS vs. BRAFi-resistant A375-BRAF/NRAS), we show that BRAFi (vemurafenib) treatment selectively targets BRAF/NRAS cells upregulating epithelial-to-mesenchymal transition (EMT) gene expression, paradoxically promoting invasiveness and metastasis in vitro and in vivo.

View Article and Find Full Text PDF

The germicidal properties of short wavelength ultraviolet C (UVC) light are well established and used to inactivate many viruses and other microbes. However, much less is known about germicidal effects of terrestrial solar UV light, confined exclusively to wavelengths in the UVA and UVB regions. Here, we have explored the sensitivity of the human coronaviruses HCoV-NL63 and SARS-CoV-2 to solar-simulated full spectrum ultraviolet light (sUV) delivered at environmentally relevant doses.

View Article and Find Full Text PDF

Glyoxalase 1 (GLO1) is an enzyme involved in the detoxification of methylglyoxal (MG), a reactive oncometabolite formed in the context of energy metabolism as a result of high glycolytic flux. Prior clinical evidence has documented GLO1 upregulation in various tumor types including prostate cancer (PCa). However, GLO1 expression has not been explored in the context of PCa progression with a focus on high-grade prostatic intraepithelial neoplasia (HGPIN), a frequent precursor to invasive cancer.

View Article and Find Full Text PDF

The germicidal properties of short wavelength ultraviolet C (UVC) light are well established and used to inactivate many viruses and other microbes. However, much less is known about germicidal effects of terrestrial solar UV light, confined exclusively to wavelengths in the UVA and UVB regions. Here, we have explored the sensitivity of the human coronaviruses HCoV-NL63 and SARS-CoV-2 to solar-simulated full spectrum ultraviolet light (sUV) delivered at environmentally relevant doses.

View Article and Find Full Text PDF

Hypochlorous acid (HOCl) is the active oxidizing principle underlying drinking water disinfection, also delivered by numerous skin disinfectants and released by standard swimming pool chemicals used on a global scale, a topic of particular relevance in the context of the ongoing COVID-19 pandemic. However, the cutaneous consequences of human exposure to HOCl remain largely unknown, posing a major public health concern. Here, for the first time, we have profiled the HOCl-induced stress response in reconstructed human epidermis and SKH-1 hairless mouse skin.

View Article and Find Full Text PDF

There are two stable isotopes of hydrogen, protium (H) and deuterium (H; D). Cellular stress response dysregulation in cancer represents both a major pathological driving force and a promising therapeutic target, but the molecular consequences and potential therapeutic impact of deuterium (H)-stress on cancer cells remain largely unexplored. We have examined the anti-proliferative and apoptogenic effects of deuterium oxide (DO; 'heavy water') together with stress response gene expression profiling in panels of malignant melanoma (A375, A375, G361, LOX-IMVI), and pancreatic ductal adenocarcinoma (PANC-1, Capan-2, or MIA PaCa-2) cells with inclusion of human diploid Hs27 skin fibroblasts.

View Article and Find Full Text PDF

Glyoxalase 1 (encoded by GLO1) is a glutathione-dependent enzyme detoxifying the glycolytic byproduct methylglyoxal (MG), an oncometabolite involved in metabolic reprogramming. Recently, we have demonstrated that GLO1 is overexpressed in human malignant melanoma cells and patient tumors and substantiated a novel role of GLO1 as a molecular determinant of invasion and metastasis in melanoma. Here, employing NanoString™ gene expression profiling (nCounter™ 'PanCancer Progression Panel'), we report that CRISPR/Cas 9-based GLO1 deletion from human A375 malignant melanoma cells alters glucose metabolism and redox homeostasis, observable together with acceleration of tumorigenesis.

View Article and Find Full Text PDF

Radiation therapy is a frontline treatment option for cancer patients; however, the effects of radiotherapy on non-tumor tissue (e.g. radiation-induced dermatitis) often worsen patient quality of life.

View Article and Find Full Text PDF

UV-chromophores contained in human skin may act as endogenous sensitizers of photooxidative stress and can be employed therapeutically for the photodynamic elimination of malignant cells. Here, we report that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan-derived photoproduct and endogenous aryl hydrocarbon receptor agonist, displays activity as a nanomolar sensitizer of photooxidative stress, causing the photodynamic elimination of human melanoma and nonmelanoma skin cancer cells in vitro and in vivo. FICZ is an efficient UVA/Visible photosensitizer having absorbance maximum at 390 nm (ε = 9180 L mol  cm ), and fluorescence and singlet oxygen quantum yields of 0.

View Article and Find Full Text PDF

Sunless (chemical) tanning is widely regarded as a safe alternative to solar UV-induced skin tanning known to be associated with epidermal genotoxic stress, but the cutaneous biology impacted by chemical tanning remains largely unexplored. Chemical tanning is based on the formation of melanin-mimetic cutaneous pigments ('melanoidins') from spontaneous amino-carbonyl ('glycation') reactions between epidermal amino acid/protein components and reactive sugars including the glycolytic ketose dihydroxyacetone (DHA). Here, we have examined the cutaneous effects of acute DHA-exposure on cultured human HaCaT keratinocytes and epidermal reconstructs, profiled by gene expression array analysis and immunodetection.

View Article and Find Full Text PDF

Metabolic reprogramming is a molecular hallmark of cancer. Recently, we have reported the overexpression of glyoxalase 1 (encoded by ), a glutathione-dependent enzyme involved in detoxification of the reactive glycolytic byproduct methylglyoxal, in human malignant melanoma cell culture models and clinical samples. However, the specific role of in melanomagenesis remains largely unexplored.

View Article and Find Full Text PDF

Redox-directed pharmacophores have shown potential for the apoptotic elimination of cancer cells through chemotherapeutic induction of oxidative stress. Phenazine methosulfate (PMS), a N-alkylphenazinium cation-based redox cycler, is used widely as an electron transfer reactant coupling NAD(P)H generation to the reduction of tetrazolium salts in biochemical cell viability assays. Here, we have explored feasibility of repurposing the redox cycler PMS as a superoxide generating chemotherapeutic for the pro-oxidant induction of cancer cell apoptosis.

View Article and Find Full Text PDF

The health and economic burden imposed by skin cancer is substantial, creating an urgent need for the development of improved molecular strategies for its prevention and treatment. Cutaneous exposure to solar ultraviolet (UV) radiation is a causative factor in skin carcinogenesis, and TLR4-dependent inflammatory dysregulation is an emerging key mechanism underlying detrimental effects of acute and chronic UV exposure. Direct and indirect TLR4 activation, upstream of inflammatory signaling, is elicited by a variety of stimuli, including pathogen-associated molecular patterns (such as lipopolysaccharide) and damage-associated molecular patterns (such as HMGB1) that are formed upon exposure to environmental stressors, such as solar UV.

View Article and Find Full Text PDF