Publications by authors named "Georg Rollmann"

The thermal decomposition of Ga(CH3)3 has been studied both experimentally in shock-heated gases and theoretically within an ab-initio framework. Experiments for pressures ranging from 0.3 to 4 bar were performed in a shock tube equipped with atomic resonance absorption spectroscopy (ARAS) for Ga atoms at 403.

View Article and Find Full Text PDF

Based on large-scale density functional theory calculations we provide a systematic overview of the size dependence of the energetic order and magnetic properties of various morphologies of FePt and CoPt clusters with diameters of up to 2.5 nm. For FePt, ordered multiply twinned icosahedra and decahedra are more favorable than the L1_(0) phase throughout the investigated size range.

View Article and Find Full Text PDF

Structure and magnetism of iron clusters with up to 641 atoms have been investigated by means of density functional theory calculations including full geometric optimizations. Body-centered cubic (bcc) isomers are found to be lowest in energy when the clusters contain more than about 100 atoms. In addition, another stable conformation has been identified for magic-number clusters, which lies well within the range of thermal energies as compared to the bcc isomers.

View Article and Find Full Text PDF

The potential energy surface of the Fe dimer is investigated on the basis of density functional theory in the generalized gradient approximation (GGA). Electron correlation effects are taken into account explicitly within the GGA+U approach. We find a value of 2.

View Article and Find Full Text PDF