Publications by authors named "Georg Martius"

Anisotropic patchy particles have become an archetypical statistical model system for associating fluids. Here, we formulate an approach to the Kern-Frenkel model via the classical density functional theory to describe the positionally and orientationally resolved equilibrium density distributions in flat wall geometries. The density functional is split into a reference part for the orientationally averaged density and an orientational part in mean-field approximation.

View Article and Find Full Text PDF

It has long been hypothesized that operating close to the critical state is beneficial for natural and artificial evolutionary systems. We put this hypothesis to test in a system of evolving foraging agents controlled by neural networks that can adapt the agents' dynamical regime throughout evolution. Surprisingly, we find that all populations that discover solutions evolve to be subcritical.

View Article and Find Full Text PDF

Tactile feedback is essential to make robots more agile and effective in unstructured environments. However, high-resolution tactile skins are not widely available; this is due to the large size of robust sensing units and because many units typically lead to fragility in wiring and to high costs. One route toward high-resolution and robust tactile skins involves the embedding of a few sensor units (taxels) into a flexible surface material and the use of signal processing to achieve sensing with superresolution accuracy.

View Article and Find Full Text PDF

Manual inspection of workpieces in highly flexible production facilities with small lot sizes is costly and less reliable compared to automated inspection systems. Reinforcement Learning (RL) offers promising, intelligent solutions for robotic inspection and manufacturing tasks. This paper presents an RL-based approach to determine a high-quality set of sensor view poses for arbitrary workpieces based on their 3D computer-aided design (CAD).

View Article and Find Full Text PDF

Cognitive fMRI research primarily relies on task-averaged responses over many subjects to describe general principles of brain function. Nonetheless, there exists a large variability between subjects that is also reflected in spontaneous brain activity as measured by resting state fMRI (rsfMRI). Leveraging this fact, several recent studies have therefore aimed at predicting task activation from rsfMRI using various machine learning methods within a growing literature on 'connectome fingerprinting'.

View Article and Find Full Text PDF

Robust haptic sensation systems are essential for obtaining dexterous robots. Currently, we have solutions for small surface areas, such as fingers, but affordable and robust techniques for covering large areas of an arbitrary 3D surface are still missing. Here, we introduce a general machine learning framework to infer multi-contact haptic forces on a 3D robot's limb surface from internal deformation measured by only a few physical sensors.

View Article and Find Full Text PDF

Retina is a paradigmatic system for studying sensory encoding: the transformation of light into spiking activity of ganglion cells. The inverse problem, where stimulus is reconstructed from spikes, has received less attention, especially for complex stimuli that should be reconstructed "pixel-by-pixel". We recorded around a hundred neurons from a dense patch in a rat retina and decoded movies of multiple small randomly-moving discs.

View Article and Find Full Text PDF

With the accelerated development of robot technologies, control becomes one of the central themes of research. In traditional approaches, the controller, by its internal functionality, finds appropriate actions on the basis of specific objectives for the task at hand. While very successful in many applications, self-organized control schemes seem to be favored in large complex systems with unknown dynamics or which are difficult to model.

View Article and Find Full Text PDF

Grounding autonomous behavior in the nervous system is a fundamental challenge for neuroscience. In particular, self-organized behavioral development provides more questions than answers. Are there special functional units for curiosity, motivation, and creativity? This paper argues that these features can be grounded in synaptic plasticity itself, without requiring any higher-level constructs.

View Article and Find Full Text PDF

One of the main challenges in the field of embodied artificial intelligence is the open-ended autonomous learning of complex behaviors. Our approach is to use task-independent, information-driven intrinsic motivation(s) to support task-dependent learning. The work presented here is a preliminary step in which we investigate the predictive information (the mutual information of the past and future of the sensor stream) as an intrinsic drive, ideally supporting any kind of task acquisition.

View Article and Find Full Text PDF

Information theory is a powerful tool to express principles to drive autonomous systems because it is domain invariant and allows for an intuitive interpretation. This paper studies the use of the predictive information (PI), also called excess entropy or effective measure complexity, of the sensorimotor process as a driving force to generate behavior. We study nonlinear and nonstationary systems and introduce the time-local predicting information (TiPI) which allows us to derive exact results together with explicit update rules for the parameters of the controller in the dynamical systems framework.

View Article and Find Full Text PDF

Autonomous robots can generate exploratory behavior by self-organization of the sensorimotor loop. We show that the behavioral manifold that is covered in this way can be modified in a goal-dependent way without reducing the self-induced activity of the robot. We present three strategies for guided self-organization, namely by using external rewards, a problem-specific error function, or assumptions about the symmetries of the desired behavior.

View Article and Find Full Text PDF