Publications by authors named "Georg Maret"

In photonic crystals, the propagation of light is governed by their photonic band structure, an ensemble of propagating states grouped into bands, separated by photonic band gaps. Due to discrete symmetries in spatially strictly periodic dielectric structures their photonic band structure is intrinsically anisotropic. However, for many applications, such as manufacturing artificial structural color materials or developing photonic computing devices, but also for the fundamental understanding of light-matter interactions, it is of major interest to seek materials with long range nonperiodic dielectric structures which allow the formation of photonic band gaps.

View Article and Find Full Text PDF

Recent advances in ultrasound Doppler imaging have facilitated the technique of functional ultrasound (fUS) which enables visualization of brain-activity due to neurovascular coupling. As of yet, this technique has been applied to rodents as well as to human subjects during awake craniotomy surgery and human newborns. Here we demonstrate the first successful fUS studies on awake pigeons subjected to auditory and visual stimulation.

View Article and Find Full Text PDF

One efficient method to obtain disordered colloidal packing is to reduce the stability of colloidal particles by adding electrolytes to the colloidal dispersions. But the correct amount of additional electrolytes must be found empirically. Here, the effect of CaCl on polystyrene colloidal dispersions is studied, and a link between the amount of CaCl and the corresponding glassy colloidal structure is quantitatively built.

View Article and Find Full Text PDF

Hypertension is a major risk factor for cardiovascular disease and thus at the origin of many deaths by e.g. heart attack or stroke.

View Article and Find Full Text PDF

Gaining external control over self-organization is of vital importance for future smart materials. Surfactants are extremely valuable for the synthesis of diverse nanomaterials. Their self-assembly is dictated by microphase separation, the hydrophobic effect, and head-group repulsion.

View Article and Find Full Text PDF

Melting in two dimensions can successfully be explained with the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) scenario which describes the formation of the high-symmetry phase with the thermal activation of topological defects within an (ideally) infinite monodomain. With all state variables being well defined, it should hold also as freezing scenario where oppositely charged topological defects annihilate. The Kibble-Zurek mechanism, on the other hand, shows that spontaneous symmetry breaking alongside a continuous phase transition cannot support an infinite monodomain but leads to polycrystallinity.

View Article and Find Full Text PDF

The Kibble-Zurek mechanism describes the evolution of topological defect structures like domain walls, strings, and monopoles when a system is driven through a second-order phase transition. The model is used on very different scales like the Higgs field in the early universe or quantum fluids in condensed matter systems. A defect structure naturally arises during cooling if separated regions are too far apart to communicate (e.

View Article and Find Full Text PDF

We study in experiment and with computer simulation the free energy and the kinetics of vacancy and interstitial defects in two-dimensional dipolar crystals. The defects appear in different local topologies, which we characterize by their point group symmetry; Cn is the n-fold cyclic group and Dn is the dihedral group, including reflections. The frequency of different local topologies is not determined by their almost degenerate energies but is dominated by entropy for symmetric configurations.

View Article and Find Full Text PDF

We report the specific heat cN around the melting transition(s) of micrometer-sized superparamagnetic particles confined in two dimensions, calculated from fluctuations of positions and internal energy, and corresponding Monte Carlo simulations. Since colloidal systems provide single particle resolution, they offer the unique possibility to compare the experimental temperatures of the peak position of cN(T) and symmetry breaking, respectively. While order parameter correlation functions confirm the Kosterlitz-Thouless-Halperin-Nelson-Young melting scenario where translational and orientational order symmetries are broken at different temperatures with an intermediate so called hexatic phase, we observe a single peak of the specific heat within the hexatic phase, with excellent agreement between experiment and simulation.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are studying tiny magnetic particles that can move in two dimensions to see how they group together and change shape when things get hotter or more chaotic.
  • They look at how many groups of particles form, how big these groups are, and what happens to the leftover particles that don’t group up.
  • They discovered that when the particles get more disordered, it helps create a special state called the hexatic phase, where the particles have a mix of solid and liquid-like behaviors.
View Article and Find Full Text PDF

Using experiments with single-particle resolution and computer simulations we study the collective behavior of multiple vacancies injected into two-dimensional crystals. We find that the defects assemble into linear strings, terminated by dislocations with antiparallel Burgers vectors. We show that these defect strings propagate through the crystal in a succession of rapid one-dimensional gliding and rare rotations.

View Article and Find Full Text PDF

We study the influence of quenched disorder on the two-dimensional melting behavior of superparamagnetic colloidal particles, using both video microscopy and computer simulations of repulsive parallel dipoles. Quenched disorder is introduced by pinning a fraction of the particles to an underlying substrate. We confirm the occurrence of the Kosterlitz-Thouless-Halperin-Nelson-Young scenario and observe an intermediate hexatic phase.

View Article and Find Full Text PDF

Using positional data from video microscopy of a two-dimensional colloidal system and from simulations of hard disks, we determine the wave-vector-dependent elastic dispersion relations in glass. The emergence of rigidity based on the existence of a well defined displacement field in amorphous solids is demonstrated. Continuum elastic theory is recovered in the limit of long wavelengths which provides the glass elastic shear and bulk modulus as a function of temperature.

View Article and Find Full Text PDF

We use super-paramagnetic spherical particles which are arranged in a two-dimensional monolayer at a water/air interface to investigate the crystal to liquid phase transition. According to the KTHNY theory a crystal melts in thermal equilibrium by two continuous phase transitions into the isotropic liquid state with an intermediate phase, commonly known as the hexatic phase. We verify the significance of several criteria based on dynamical and structural properties to identify the crystal-hexatic and hexatic-isotropic liquid phase transitions for the same experimental data of the given setup.

View Article and Find Full Text PDF

While the melting of crystals is in general not understood in detail on a microscopic scale, there is a microscopic theory for a class of two-dimensional crystals, which is based on the formation and unbinding of topological defects. Herein, we review experimental work on a colloidal two-dimensional model system with tunable interactions that has given the first conclusive evidence for the validity of this theory on a microscopic level. Furthermore, we show how the mechanism of melting depends on the particle interaction and that a strong anisotropy of the interaction leads to a changed melting scenario.

View Article and Find Full Text PDF

An ultrafast quench is applied to binary mixtures of superparamagnetic colloidal particles confined at a two-dimensional water-air interface by a sudden increase of an external magnetic field. This quench realizes a virtually instantaneous cooling which is impossible in molecular systems. Using real-space experiments, the relaxation behavior after the quench is explored.

View Article and Find Full Text PDF

Using time-resolved transmission measurements, we have found indications of Anderson localization of light in bulk three-dimensional systems. The observed deviation from classical diffusion is in good accord with theoretical predictions of localization and cannot be explained by absorption or experimental artifacts such as stratification, fluorescence, or background illumination. Moreover, we show that in our samples the control parameter is given by the mean free path times the wavenumber as required by the Ioffe-Regel criterion.

View Article and Find Full Text PDF

We investigate the influence of a non-scattering layer on the temporal field autocorrelation function of multiple scattered light from a multilayer turbid medium such as the human head. Data from Monte Carlo simulations show very good agreement with the predictions of the correlation-diffusion equation with boundary conditions taking into account non-diffusive light transport within the non-scattering layer. Field autocorrelation functions measured at the surface of a multilayer phantom including a non-scattering layer agree well with theory and simulations when the source-receiver distance is significantly larger than the depth and the thickness of the non-scattering layer.

View Article and Find Full Text PDF

Strongly interacting binary mixtures of superparamagnetic colloidal particles confined to a two-dimensional water-air interface are examined by theory, computer simulation, and experiment. The mixture exhibits a partial clustering in equilibrium: in the voids of the matrix of unclustered big particles, the small particles form subclusters with a spongelike topology which is accompanied by a characteristic small-wave vector peak in the small-small structure factor. This partial clustering is a general phenomenon occurring for strongly coupled negatively nonadditive mixtures.

View Article and Find Full Text PDF

We present a technique for measuring transient microscopic dynamics within deep tissue with sub-second temporal resolution, using diffusing-wave spectroscopy with gated single-photon avalanche photodiodes (APDs) combined with standard ungated multi-tau correlators. Using the temporal autocorrelation function of a reference signal allows to correct the temporal intensity autocorrelation function of the sample signal for the distortions induced by the non-constant average photon count rate. We apply this technique to pulsation-synchronized measurements of tissue dynamics in humans.

View Article and Find Full Text PDF

The transport properties of photons traveling through random media are of great fundamental and applied importance. For instance the dwell time due to resonant Mie scattering can lead to a significant reduction in transport velocity. Here, we have measured directly the energy-transport velocity of photons in strongly scattering media using a combination of time resolved transmission, measuring the diffusion coefficient, and angular resolved backscattering, yielding the transport mean free path.

View Article and Find Full Text PDF

The transition from diffusive transport to localization of waves should occur for any type of classical or quantum wave in any media as long as the wavelength becomes comparable to the transport mean free path l*. The signatures of localization and those of absorption, or bound states, can, however, be similar, such that an unequivocal proof of the existence of wave localization in disordered bulk materials is still lacking. Here we present time resolved measurements of light transport through strongly scattering samples with kl* values as low as 2.

View Article and Find Full Text PDF

Hollow spherical particles of rutile were obtained by coating colloidal polystyrene beads with a titanium oxide hydrate layer and subsequently calcining at elevated temperatures under an oxygen atmosphere. In order to investigate the optimum conditions for the preparation of these hollow beads the maximum temperature and heating rate were systematically varied. The dimensions of the voids and the shell thickness of the hollow beads can be tailored by the size of the polystyrene beads and the thickness of the inorganic layer, respectively.

View Article and Find Full Text PDF

We use near-infrared dynamic multiple scattering of light [diffusing-wave spectroscopy (DWS)] to detect the activation of the somato-motor cortex in 11 right-handed volunteers performing a finger opposition task separately with their right and left hands. Temporal autocorrelation functions g(1)(r,tau) of the scattered light field are measured during 100-s periods of motor task alternating with 100-s resting baseline periods. From an analysis of the experimental data with an analytical theory for g(1)(r,tau) from a three-layer geometry with optical and dynamical heterogeneity representing scalp, skull, and cortex, we obtain quantitative estimates of the diffusion coefficient in cortical regions.

View Article and Find Full Text PDF