Fragrance encapsulates are widely used in consumer care applications such as fabric softeners or other liquid laundry products; they provide multiple benefits, from fragrance protection in the commercial product to a controlled release and improved sensorial experience for the consumers. Polymeric fragrance encapsulates are in the scope of the EU regulation restricting the use of intentionally added microplastic particles, and industry is actively working on innovation programs to find biodegradable alternatives. However, particular attention needs to be paid to claims that a fragrance encapsulation system is biodegradable, because biodegradation test results can vary considerably depending on how a test material is prepared, which can even lead to false-positive biodegradation test results, as shown in our study.
View Article and Find Full Text PDFThis research evaluated the intra- and interlaboratory variability when applying OECD 301F and OECD 301B Ready Biodegradation respirometric test methods to quantify polymer biodegradation as well as the impact of method modifications including test duration, inoculum level and test substance concentration on results. This assessment synthesizes results of mineralization studies on 5 polymers of varying structural components, molecular weight, charge, and solubility, evaluated at 8 different laboratories in 4 different countries, providing significant geographic variation in inoculum source as well as lab to lab variations in test setup. Across all laboratories, intralaboratory variability was low (≤18 % absolute difference) indicating the reproducibility of results between replicates and uniformity of test setup in each laboratory.
View Article and Find Full Text PDFThe determination of persistence (P), bioaccumulation (B) and toxicity (T) plays a central role in the environmental assessment of chemicals. Persistence is typically evaluated standard microbial biodegradation tests. Bioaccumulation refers to the accumulation of chemicals in organisms and is usually assessed in fish exposed to the test chemical.
View Article and Find Full Text PDFSesquiterpenes are ubiquitous in essential oils but an assessment of their environmental behavior is still required for their use as components of natural fragrance ingredients and oral care flavors. Persistency plays a key role in hazard and risk assessment, but the current knowledge on the biodegradation of sesquiterpenes in the aquatic environment is limited. This could have important consequences for the persistent, bioaccumulative and toxic (PBT) assessment of essential oils because most of the sesquiterpene components have a log K(OW) of >4.
View Article and Find Full Text PDF