In Chlamydomonas, the directly light-gated, plasma membrane-localized cation channels channelrhodopsins ChR1 and ChR2 are the primary photoreceptors for phototaxis. Their targeting and abundance is essential for optimal movement responses. However, our knowledge how Chlamydomonas achieves this is still at its infancy.
View Article and Find Full Text PDFOriented movement (phototaxis) is an efficient way to optimize light-driven processes and to avoid photodamage for motile algae. In Chlamydomonas the receptors for phototaxis are the channelrhodopsins ChR1 and ChR2. Both are directly light-gated, plasma membrane-localized cation channels.
View Article and Find Full Text PDFThe unicellular alga () exhibits oriented movement responses (phototaxis) to light over more than three log units of intensity. Phototaxis thus depends on the cell's ability to adjust the sensitivity of its photoreceptors to ambient light conditions. In , the photoreceptors for phototaxis are the channelrhodopsins (ChR)1 and ChR2; these light-gated cation channels are located in the plasma membrane.
View Article and Find Full Text PDFThe fast-growing biflagellated single-celled chlorophyte is the most widely used alga in basic research. The physiological functions of the 18 sensory photoreceptors are of particular interest with respect to Chlamydomonas development and behavior. Despite the demonstration of gene editing in Chlamydomonas in 1995, the isolation of mutants lacking easily ascertained newly acquired phenotypes remains problematic due to low DNA recombination efficiency.
View Article and Find Full Text PDFFlagellate green algae possess a visual system, the eyespot. In Chlamydomonas reinhardtii it is situated at the edge of the chloroplast and consists of two carotenoid rich lipid globule layers subtended by thylakoid membranes (TM) that are attached to both chloroplast envelope membranes and a specialized area of the plasma membrane (PM). A former analysis of an eyespot fraction identified 203 proteins.
View Article and Find Full Text PDFThe eyespot of Chlamydomonas reinhardtii is a light-sensitive organelle important for phototactic orientation of the alga. Here, we found that eyespot size is strain specific and downregulated in light. In a strain in which the blue light photoreceptor phototropin was deleted by homologous recombination, the light regulation of the eyespot size was affected.
View Article and Find Full Text PDFThe flagellated green alga Chlamydomonas reinhardtii has a primitive visual system, the eyespot. It is situated at the cells equator and allows the cell to phototax. In a previous proteomic analysis of the eyespot, the SOUL3 protein was identified among 202 proteins.
View Article and Find Full Text PDFOne of the key modifications of proteins that can affect protein functions, activities, stabilities, localizations and interactions, represents phosphorylation. For functional phosphoproteomics, phosphopeptides are enriched from isolated sub-cellular fractions of interest and analyzed by liquid chromatography-electrospray ionization-mass spectrometry. Such an approach was recently applied to the eyespot apparatus of the green flagellate alga Chlamydomonas reinhardtii, which represents a primordial visual system.
View Article and Find Full Text PDFChlamydomonas reinhardtii is a biflagellate and photosynthetic unicellular alga that has long fascinated scientists because it combines characteristics of both plants and animals. Chlamydomonas offers the simplicity of a unicellular organism that is amenable to genetic screening, molecular, and biochemical approaches, as well as to transformation of its nuclear, plastid, or mitochondrial genomes. Over the past decade, proteomics based studies of Chlamydomonas have provided major research contributions in the areas of photosynthesis, molecular biology, and evolution.
View Article and Find Full Text PDFMost flagellate green algae exhibiting phototaxis posses a singular specialized light sensitive organelle, the eyespot apparatus (EA). Its design principles are similar in all green algae and produce, in conjunction with the movement pattern of the cell, a highly directional optical device. It enables an oriented movement response with respect to the direction and intensity of light.
View Article and Find Full Text PDFFlagellate green algae have developed a visual system, the eyespot apparatus, which allows the cell to phototax. In a recent proteomic approach, we identified 202 proteins from a fraction enriched in eyespot apparatuses of Chlamydomonas reinhardtii. Among these proteins, five protein kinases and two protein phosphatases were present, indicating that reversible protein phosphorylation occurs in the eyespot.
View Article and Find Full Text PDFFlagellate green algae have developed a visual system, the eyespot apparatus, which allows the cell to phototax. To further understand the molecular organization of the eyespot apparatus and the phototactic movement that is controlled by light and the circadian clock, a detailed understanding of all components of the eyespot apparatus is needed. We developed a procedure to purify the eyespot apparatus from the green model alga Chlamydomonas reinhardtii.
View Article and Find Full Text PDF