Publications by authors named "Georg Kindermann"

Standing deadwood is an important structural component of forest ecosystems. Its occurrence and dynamics influence both carbon fluxes and the availability of habitats for many species. However, deadwood is greatly reduced in managed, and even in many currently unmanaged temperate forests in Europe.

View Article and Find Full Text PDF

Sustaining ecosystem services (ES) critical to human well-being is hindered by many practitioners lacking access to ES models ("the capacity gap") or knowledge of the accuracy of available models ("the certainty gap"), especially in the world's poorer regions. We developed ensembles of multiple models at an unprecedented global scale for five ES of high policy relevance. Ensembles were 2 to 14% more accurate than individual models.

View Article and Find Full Text PDF

In 1892 a forest spacing experiment with four different spacing patterns was established with Norway spruce (Picea abies). From 1923 until 1997, when the stand was harvested, diameter, height and height to crown base of in total 4507 trees were measured up to 23 times. The original aim of the experiment during establishment was to analyse short term effects of different spacing patterns.

View Article and Find Full Text PDF

Emission metrics aggregate climate impacts of greenhouse gases to common units such as CO2-equivalents (CO2-eq.). Examples include the global warming potential (GWP), the global temperature change potential (GTP) and the absolute sustained emission temperature (aSET).

View Article and Find Full Text PDF

Background: A regional-scale sensitivity study has been carried out to investigate the climatic effects of forest cover change in Europe. Applying REMO (regional climate model of the Max Planck Institute for Meteorology), the projected temperature and precipitation tendencies have been analysed for summer, based on the results of the A2 IPCC-SRES emission scenario simulation. For the end of the 21st century it has been studied, whether the assumed forest cover increase could reduce the effects of the greenhouse gas concentration change.

View Article and Find Full Text PDF

Background: Forests play an important role in the global carbon flow. They can store carbon and can also provide wood which can substitute other materials. In EU27 the standing biomass is steadily increasing.

View Article and Find Full Text PDF

The issues surrounding 'Reduced Emissions from Deforestation and Forest Degradation' (REDD) have become a major component of continuing negotiations under the United Nations Framework Convention on Climate Change (UNFCCC). This paper aims to address two key requirements of any potential REDD mechanism: first, the generation of measurable, reportable and verifiable (MRV) REDD credits; and secondly, the sustainable and efficient provision of emission reductions under a robust financing regime.To ensure the supply of MRV credits, we advocate the establishment of an 'International Emission Reference Scenario Coordination Centre' (IERSCC).

View Article and Find Full Text PDF

Background: Negotiations on a future climate policy framework addressing Reduced Emissions from Deforestation and Degradation (REDD) are ongoing. Regardless of how such a framework will be designed, many technical solutions of estimating forest cover and forest carbon stock change exist to support policy in monitoring and accounting. These technologies typically combine remotely sensed data with ground-based inventories.

View Article and Find Full Text PDF

Tropical deforestation is estimated to cause about one-quarter of anthropogenic carbon emissions, loss of biodiversity, and other environmental services. United Nations Framework Convention for Climate Change talks are now considering mechanisms for avoiding deforestation (AD), but the economic potential of AD has yet to be addressed. We use three economic models of global land use and management to analyze the potential contribution of AD activities to reduced greenhouse gas emissions.

View Article and Find Full Text PDF

Background: Global carbon stocks in forest biomass are decreasing by 1.1 Gt of carbon annually, owing to continued deforestation and forest degradation. Deforestation emissions are partly offset by forest expansion and increases in growing stock primarily in the extra-tropical north.

View Article and Find Full Text PDF