The flagellar motor consists of a rotor and a stator and couples the flux of cations (H(+) or Na(+)) to the generation of the torque necessary to drive flagellum rotation. The inner membrane proteins PomA and PomB are stator components of the Na(+)-driven flagellar motor from Vibrio cholerae. Affinity-tagged variants of PomA and PomB were co-expressed in trans in the non-motile V.
View Article and Find Full Text PDFThe genes encoding the subunits for the F(1)F(0)-ATP synthase from Bacillus sp. strain TA2.A1 were cloned as three overlapping fragments and sequenced.
View Article and Find Full Text PDFATP synthesis by F-type ATP synthases consumes energy stored in a transmembrane electrochemical gradient of protons or sodium ions. The electric component of the ion motive force is crucial for ATP synthesis. Here, we incorporate recent results on structure and function of the F(0) domain and present a mechanism for torque generation with the fundamental nature of the membrane potential as driving force in the core.
View Article and Find Full Text PDFTransient electrical currents generated by the Na(+)-transporting F(o)F(1)-ATPase of Ilyobacter tartaricus were observed in the hydrolytic and synthetic mode of the enzyme. Two techniques were applied: a photochemical ATP concentration jump on a planar lipid membrane and a rapid solution exchange on a solid supported membrane. We have identified an electrogenic reaction in the reaction cycle of the F(o)F(1)-ATPase that is related to the translocation of the cation through the membrane bound F(o) subcomplex of the ATPase.
View Article and Find Full Text PDFWe describe here purification and biochemical characterization of the F(1)F(o)-ATP synthase from the thermoalkaliphilic organism Bacillus sp. strain TA2.A1.
View Article and Find Full Text PDFThe atp operon of Ilyobacter tartaricus, strain DSM 2382, was completely sequenced using conventional and inverse polymerase chain reaction (i-PCR) techniques. It contains nine open reading frames that were attributed to eight structural genes of the F(1)F(o) ATP synthase and the atpI gene, which is not part of the enzyme complex. The initiation codons of all atp genes, except that of atpB coding for the a subunit, were identified by the corresponding N-terminal amino acid sequence.
View Article and Find Full Text PDFThe most prominent residue of subunit a of the F(1)F(o) ATP synthase is a universally conserved arginine (aR227 in Propionigenium modestum), which was reported to permit no substitution with retention of ATP synthesis or H(+)-coupled ATP hydrolysis activity. We show here that ATP synthases with R227K or R227H mutations in the P.modestum a subunit catalyse ATP-driven Na(+) transport above or below pH 8.
View Article and Find Full Text PDFF0F1 ATP synthases are the smallest rotary motors in nature and work as ATP factories in bacteria, plants and animals. Here we report on the first observation of intersubunit rotation in fully coupled single F0F1 molecules during ATP synthesis or hydrolysis. We investigate the Na+-translocating ATP synthase of Propionigenium modestum specifically labeled by a single fluorophore at one c subunit using polarization-resolved confocal microscopy.
View Article and Find Full Text PDFThe atpB and atpF genes of Propionigenium modestum were cloned as His-tag fusion constructs and expressed in Escherichia coli. Both recombinant subunits a and b were purified via Ni(2+) chelate affinity chromatography. A functionally active Fo complex was reassembled in vitro from subunits a, b and c, and incorporated into liposomes.
View Article and Find Full Text PDFThe mesophilic, anaerobic bacterium strain VenChi2T was isolated with quinic acid (1,3,4,5-tetrahydroxy-cyclohexane-1-carboxylic acid) as the sole source of carbon and energy. Of more than 30 substrates tested, only quinic acid and shikimic acid (3,4,5-trihydroxy-1-cyclohexene-1-carboxylic acid) were utilized, yielding acetate, propionate, butyrate, H2 and CO2 as fermentation products. Sugars, alcohols, (di-)carboxylic acids, amino acids and aromatic compounds were not fermented and no external electron acceptors were used.
View Article and Find Full Text PDF