Publications by authors named "Georg Holtermann"

A wide range of parameters influence allosteric communications between the alpha- and beta-subunits of the Trp synthase alpha(2)beta(2) multienzyme complex with L-Ser, including monovalent cations, pH, temperature, ligands, organic solvents, and hydrostatic pressure. The conformational change from closed to open can be monitored either by absorbance at 423 nm or fluorescence at 495 nm from the pyridoxal-5'-phosphate-L-Ser complex. Pressure perturbation was used to quantify the effects of monovalent cations, ligands, and mutations on the conformational equilibrium of Trp synthase.

View Article and Find Full Text PDF

The two-state folding reaction of the cold shock protein from Bacillus caldolyticus (Bc-Csp) is preceded by a rapid chain collapse. A fast shortening of intra-protein distances was revealed by Förster resonance energy transfer (FRET) measurements with protein variants that carried individual pairs of donor and acceptor chromophores at various positions along the polypeptide chain. Here we investigated the specificity of this rapid compaction.

View Article and Find Full Text PDF

Escherichia coli tryptophan indole-lyase (Trpase) is a bacterial pyridoxal 5'-phosphate (PLP)-dependent enzyme which catalyzes the reversible beta-elimination of l-Trp to give indole and ammonium pyruvate. H463F mutant E. coli Trpase (H463F Trpase) has very low activity with l-Trp, but it has near wild-type activity with other in vitro substrates, such as S-ethyl-l-cysteine and S-(o-nitrophenyl)-l-cysteine [Phillips, R.

View Article and Find Full Text PDF

The effect of hydrostatic pressure on the tryptophan (Trp) synthase alpha2beta2 complex from Salmonella typhimurium has been investigated. Trp synthase has been shown previously to exhibit low-activity (open) and high-activity (closed) conformations. The equilibrium between the open and closed conformations of Trp synthase has been found to be affected by a wide range of variables, including alpha-subunit ligands, monovalent cations, organic solvents, pH, and temperature.

View Article and Find Full Text PDF

The cold-shock protein CspB folds rapidly in a N <= => U two-state reaction via a transition state that is about 90% native in its interactions with denaturants and water. This suggested that the energy barrier to unfolding is overcome by processes occurring in the protein itself, rather than in the solvent. Nevertheless, CspB unfolding depends on the solvent viscosity.

View Article and Find Full Text PDF

Reactions involving proteins frequently involve large changes in volume, which allows the equilibrium position to be perturbed by changes in pressure. Rapid changes in pressure can thus be used to initiate relaxation in pressure; however, this approach is seldom used, because it requires specialized equipment. We have built a microvolume (50 microl) pressure-jump apparatus, powered by a piezoelectric actuator, based on the original design of Clegg and Maxfield [(1976) Rev.

View Article and Find Full Text PDF