Publications by authors named "Georg Golderer"

Alkylglycerol monooxygenase (AGMO) and plasmanylethanolamine desaturase (PEDS1) are enzymes involved in ether lipid metabolism. While AGMO degrades plasmanyl lipids by oxidative cleavage of the ether bond, PEDS1 exclusively synthesizes a specific subclass of ether lipids, the plasmalogens, by introducing a vinyl ether double bond into plasmanylethanolamine phospholipids. Ether lipids are characterized by an ether linkage at the sn-1 position of the glycerol backbone and they are found in membranes of different cell types.

View Article and Find Full Text PDF

Little is known about the physiological role of alkylglycerol monooxygenase (AGMO), the only enzyme capable of cleaving the 1-O-alkyl ether bond of ether lipids. Expression and enzymatic activity of this enzyme can be detected in a variety of tissues including adipose tissue. This labile lipolytic membrane-bound protein uses tetrahydrobiopterin as a cofactor, and mice with reduced tetrahydrobiopterin levels have alterations in body fat distribution and blood lipid concentrations.

View Article and Find Full Text PDF

Plasmalogens are an abundant class of glycerophospholipids in the mammalian body, with special occurrence in the brain and in immune cell membranes. Plasmanylethanolamine desaturase (PEDS1) is the final enzyme of plasmalogen biosynthesis, which introduces the characteristic 1-O-alk-1'-enyl double bond. The recent sequence identification of PEDS1 as transmembrane protein 189 showed that its protein sequence is related to a special class of plant desaturases (FAD4), with whom it shares a motif of 8 conserved histidines, which are essential for the enzymatic activity.

View Article and Find Full Text PDF

Background: Genome editing in mice using either classical approaches like homologous recombination or CRISPR/Cas9 has been reported to harbor off target effects (insertion/deletion, frame shifts or gene segment duplications) that lead to mutations not only in close proximity to the target site but also outside. Only the genomes of few engineered mouse strains have been sequenced. Since the role of the ether-lipid cleaving enzyme alkylglycerol monooxygenase (AGMO) in physiology and pathophysiology remains enigmatic, we created a knockout mouse model for AGMO using EUCOMM stem cells but unforeseen genotyping issues that did not agree with Mendelian distribution and enzyme activity data prompted an in-depth genomic validation of the mouse model.

View Article and Find Full Text PDF

A significant fraction of the glycerophospholipids in the human body is composed of plasmalogens, particularly in the brain, cardiac, and immune cell membranes. A decline in these lipids has been observed in such diseases as Alzheimer's and chronic obstructive pulmonary disease. Plasmalogens contain a characteristic 1--alk-1'-enyl ether (vinyl ether) double bond that confers special biophysical, biochemical, and chemical properties to these lipids.

View Article and Find Full Text PDF

The transcription factor FOXO3 is associated with poor outcome in high-stage neuroblastoma (NB), as it facilitates chemoprotection and tumor angiogenesis. In other tumor entities, FOXO3 stimulates metastasis formation, one of the biggest challenges in the treatment of aggressive NB. However, the impact of FOXO3 on the metastatic potential of neuronal tumor cells remains largely unknown.

View Article and Find Full Text PDF

In filamentous fungi, arginine methylation has been implicated in morphogenesis, mycotoxin biosynthesis, pathogenicity, and stress response although the exact role of this posttranslational modification in these processes remains obscure. Here, we present the first genome-wide transcriptome analysis in filamentous fungi that compared expression levels of genes regulated by type I and type II protein arginine methyltransferases (PRMTs). In Aspergillus nidulans, three conserved type I and II PRMTs are present that catalyze asymmetric or symmetric dimethylation of arginines.

View Article and Find Full Text PDF

Two-dimensional difference gel electrophoresis (2D-DIGE) has been used for identification of possible biomarkers in the cerebrospinal fluid (CSF) of multiple sclerosis (MS) patients. However, in different studies inconsistent results have been obtained. We wanted to analyze the diagnostic value of 2D-DIGE in early MS patients by comparing protein patterns between single and pooled samples of MS patients and controls.

View Article and Find Full Text PDF

Transplant vasculopathy (TV) represents a major obstacle to long-term graft survival and correlates with severity of ischemia reperfusion injury (IRI). Donor administration of the nitric oxide synthases (NOS) co-factor tetrahydrobiopterin has been shown to prevent IRI. Herein, we analysed whether tetrahydrobiopterin is also involved in TV development.

View Article and Find Full Text PDF

Physarum polycephalum is a well-studied microbial eukaryote with unique experimental attributes relative to other experimental model organisms. It has a sophisticated life cycle with several distinct stages including amoebal, flagellated, and plasmodial cells. It is unusual in switching between open and closed mitosis according to specific life-cycle stages.

View Article and Find Full Text PDF

Tetrahydrobiopterin is a cofactor synthesized from GTP with well-known roles in enzymatic nitric oxide synthesis and aromatic amino acid hydroxylation. It is used to treat mild forms of phenylketonuria. Less is known about the role of tetrahydrobiopterin in lipid metabolism, although it is essential for irreversible ether lipid cleavage by alkylglycerol monooxygenase.

View Article and Find Full Text PDF

Mutations in the gene coding for membrane-bound fatty aldehyde dehydrogenase (FALDH) lead to toxic accumulation of lipid species and development of the Sjögren-Larsson Syndrome (SLS), a rare disorder characterized by skin defects and mental retardation. Here, we present the crystallographic structure of human FALDH, the first model of a membrane-associated aldehyde dehydrogenase. The dimeric FALDH displays a previously unrecognized element in its C-terminal region, a 'gatekeeper' helix, which extends over the adjacent subunit, controlling the access to the substrate cavity and helping orientate both substrate cavities towards the membrane surface for efficient substrate transit between membranes and catalytic site.

View Article and Find Full Text PDF

The lack of fatty aldehyde dehydrogenase function in Sjögren Larsson Syndrome (SLS) patient cells not only impairs the conversion of fatty aldehydes into their corresponding fatty acid but also has an effect on connected pathways. Alteration of the lipid profile in these cells is thought to be responsible for severe symptoms such as ichtyosis, mental retardation, and spasticity. Here we present a novel approach to examine fatty aldehyde metabolism in a time-dependent manner by measuring pyrene-labeled fatty aldehyde, fatty alcohol, fatty acid, and alkylglycerol in the culture medium of living cells using HPLC separation and fluorescence detection.

View Article and Find Full Text PDF

Blue native electrophoresis (BNE) was applied to analyze the von Willebrand factor (vWF) multimers in their native state and to present a methodology to perform blue native electrophoresis on human plasma proteins, which has not been done before. The major difference between this method and the commonly used SDS-agarose gel electrophoresis is the lack of satellite bands in the high-resolution native gel. To further analyze this phenomenon, a second dimension was performed under denaturing conditions.

View Article and Find Full Text PDF

Context: Previous studies have implicated a deficiency in the inflammatory response in women who develop endometriosis. The specific immunological deficits have not been completely elucidated.

Objective: Our objective was to identify differences in protein expression in serum that might shed light on the pathophysiology of endometriosis.

View Article and Find Full Text PDF

Analysis of von Willebrand factor (vWF) multimers allows classification of the subtypes of von Willebrand disease (vWD) in human serum and platelet lysates. A novel method for multimer analysis of vWF by 2-chamber, vertical (sodium dodecyl sulfate), agarose gel electrophoresis, designed for comparing discontinuous high- and low-resolving gels for plasma and platelets, followed by Western blotting and high-sensitivity fluorescence detection (HSFD) of cyanine (Cy)5-labeled vWF multimers is presented. HSFD shows that this method has high discriminatory power for visualization and densitometric analysis of platelets and plasma vWF multimers in various types of vWD and allows rapid classification of vWD types, to separate types 2A and 2B.

View Article and Find Full Text PDF

Background: Aneurysm and dissection of the ascending aorta carry the risk of life-threatening complications. The anti-protease alpha 1 antitrypsin plays an important role in the tissue protease - anti-protease equilibrium. We aim to investigate the molecular pathology of these diseases by differential proteomics and mass-spectrometric analysis.

View Article and Find Full Text PDF

Background: Proteome analysis has emerged as a valuable tool for the study of large-scale protein expression profiles. Here, we applied this novel technology to identify specific biomarkers for acute cardiac allograft rejection.

Methods: Hearts of C57BL/10 mice were placed in fully major histocompatibility complex-mismatched C3H/He recipients.

View Article and Find Full Text PDF

Physarum polycephalum expresses two closely related, calcium-independent NOSs (nitric oxide synthases). In our previous work, we showed that both NOSs are induced during starvation and apparently play a functional role in sporulation. In the present study, we characterized the genomic structures of both Physarum NOSs, expressed both enzymes recombinantly in bacteria and characterized their biochemical properties.

View Article and Find Full Text PDF

Glyceryl ether monooxygenase is a tetrahydrobiopterin-dependent membrane-bound enzyme which catalyses the cleavage of lipid ethers into glycerol and the corresponding aldehyde. Despite many different characterisation and purification attempts, so far no gene and primary sequence have been assigned to this enzyme. The seven other tetrahydrobiopterin-dependent enzymes can be divided in the family of aromatic amino acid hydroxylases - comprising phenylalanine hydroxylase, tyrosine hydroxylase and the two tryptophan hydroxylases - and into the three nitric oxide synthases.

View Article and Find Full Text PDF