Publications by authors named "Georg Dresen"

Dynamic failure in the laboratory is commonly preceded by many foreshocks which accompany premonitory aseismic slip. Aseismic slip is also thought to govern earthquake nucleation in nature, yet, foreshocks are rare. Here, we examine how heterogeneity due to different roughness, damage and pore pressures affects premonitory slip and acoustic emission characteristics.

View Article and Find Full Text PDF

Earthquakes are rupture-like processes that propagate along tectonic faults and cause seismic waves. The propagation speed and final area of the rupture, which determine an earthquake's potential impact, are directly related to the nature and quantity of the energy dissipation involved in the rupture process. Here, we present the challenges associated with defining and measuring the energy dissipation in laboratory and natural earthquakes across many scales.

View Article and Find Full Text PDF

Surface roughness ubiquitously prevails in natural faults across various length scales. Despite extensive studies highlighting the important role of fault geometry in the dynamics of tectonic earthquakes, whether and how fault roughness affects fluid-induced seismicity remains elusive. Here, we investigate the effects of fault geometry and stress heterogeneity on fluid-induced fault slip and associated seismicity characteristics using laboratory experiments and numerical modeling.

View Article and Find Full Text PDF
Article Synopsis
  • - The study demonstrated that real-time seismic monitoring helped manage induced earthquakes during the stimulation of a geothermal well near Helsinki, Finland, by tracking their rates and locations.
  • - Over 49 days in 2018, researchers injected 18,160 m of water into deep crystalline rocks, using a network of 24 seismometers to gather data.
  • - By adjusting pumping pressure and flow rates based on seismic data, the team successfully avoided a significant earthquake (magnitude 2.0), which was a critical limit set by local authorities.
View Article and Find Full Text PDF

A primary hurdle in observing small foreshocks is the detection-limit of most seismic networks, which is typically about magnitude M1-1.5. We show that a start-up test of a borehole-based seismic network with a much lower detection limit overcame this problem for an M4.

View Article and Find Full Text PDF

We study triggering processes in triaxial compression experiments under a constant displacement rate on sandstone and granite samples using spatially located acoustic emission events and their focal mechanisms. We present strong evidence that event-event triggering plays an important role in the presence of large-scale or macrocopic imperfections, while such triggering is basically absent if no significant imperfections are present. In the former case, we recover all established empirical relations of aftershock seismicity including the Gutenberg-Richter relation, a modified version of the Omori-Utsu relation and the productivity relation-despite the fact that the activity is dominated by compaction-type events and triggering cascades have a swarmlike topology.

View Article and Find Full Text PDF

Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or "quakes". We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff.

View Article and Find Full Text PDF

Over the last century the North Anatolian Fault Zone in Turkey has produced a remarkable sequence of large earthquakes. These events have now left an earthquake gap south of Istanbul and beneath the Marmara Sea, a gap that has not been filled for 250 years. Here we investigate the nature of the eastern end of this gap using microearthquakes recorded by seismographs primarily on the Princes Islands offshore Istanbul.

View Article and Find Full Text PDF

One of the hallmarks of our current understanding of seismicity as highlighted by the epidemic-type-aftershock sequence model is that the magnitudes of earthquakes are independent of one another and can be considered as randomly drawn from the Gutenberg-Richter distribution. This assumption forms the basis of many approaches for forecasting seismicity rates and hazard assessment. Recently, it has been suggested that the assumption of independent magnitudes is not valid.

View Article and Find Full Text PDF

We present a detailed statistical analysis of acoustic emission time series from laboratory rock fracture obtained from different experiments on different materials including acoustic emission controlled triaxial fracture and punch-through tests. In all considered cases, the waiting time distribution can be described by a unique scaling function indicating its universality. This scaling function is even indistinguishable from that for earthquakes suggesting its general validity for fracture processes independent of time, space, and magnitude scales.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: