Ultrafast optical control of quantum systems is an emerging field of physics. In particular, the possibility of light-driven superconductivity has attracted much of attention. To identify nonequilibrium superconductivity, it is necessary to measure fingerprints of superconductivity on ultrafast timescales.
View Article and Find Full Text PDFTerahertz (THz) radiation is a powerful tool with widespread applications ranging from imaging, sensing, and broadband communications to spectroscopy and nonlinear control of materials. Future progress in THz technology depends on the development of efficient, structurally simple THz emitters that can be implemented in advanced miniaturized devices. Here, it is shown how the natural electronic anisotropy of layered conducting transition metal oxides enables the generation of intense terahertz radiation via the transverse thermoelectric effect.
View Article and Find Full Text PDFRuddlesden-Popper (RP) faults have emerged as a promising candidate for defect engineering in epitaxial ABO perovskites. Functionalities could be fine-tuned by incorporating RP faults into ABO thin films and superlattices. However, due to the lattice expansion at AO-AO interfaces, it is generally believed that RP faults are only energetically favorable under tensile strain.
View Article and Find Full Text PDFIn high-energy physics, the Higgs field couples to gauge bosons and fermions and gives mass to their elementary excitations. Experimentally, such couplings can be inferred from the decay product of the Higgs boson, i.e.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2018
Transition metal oxides exhibit a high potential for application in the field of electronic devices, energy storage, and energy conversion. The ability of building these types of materials by atomic layer-by-layer techniques provides a possibility to design novel systems with favored functionalities. In this study, by means of the atomic layer-by-layer oxide molecular beam epitaxy technique, we designed oxide heterostructures consisting of tetragonal KNiF-type insulating LaCuO (LCO) and perovskite-type conductive metallic LaNiO (LNO) layers with different thicknesses to assess the heterostructure-thermoelectric property-relationship at high temperatures.
View Article and Find Full Text PDFAmong the range of complex interactions, especially at the interfaces of epitaxial oxide systems, contributing to the occurrence of intriguing effects, a predominant role is played by the local structural parameters. In this study, oxide molecular beam epitaxy grown lanthanum cuprate-based bilayers (consisting of a metallic (M) and an insulating phase (I)), in which high-temperature superconductivity arises as a consequence of interface effects, are considered. With the aim of assessing the role of the dopant size on local crystal structure and chemistry, and on the interface functionalities, different dopants (Ca, Sr and, Ba) are employed in the M-phase, and the M-I bilayers are investigated by complementary techniques, including spherical-aberration-corrected scanning transmission electron microscopy.
View Article and Find Full Text PDFThe exploration of interface effects in complex oxide heterostructures has led to the discovery of novel intriguing phenomena in recent years and has opened the path toward the precise tuning of material properties at the nanoscale. One recent example is space-charge superconductivity. Among the complex range of effects which may arise from phase interaction, a crucial role is played by cationic intermixing, which defines the final chemical composition of the interface.
View Article and Find Full Text PDFUsing spherical aberration corrected high-resolution and analytical scanning transmission electron microscopy, we have quantitatively studied the lattice distortion and the redistribution of charges in two-dimensionally strontium (Sr)-doped La2CuO4 superlattices, in which single LaO planes are periodically replaced by SrO planes. As shown previously, such structures show Tc up to 35 K as a consequence of local charge accumulation on both sides of the nominal SrO planes position. This is caused by two distinct mechanisms of doping: heterogeneous doping at the downward side of the interface (space-charge effect) and "classical" homogeneous doping at the upward side.
View Article and Find Full Text PDFThe electronic phase behavior and functionality of interfaces and surfaces in complex materials are strongly correlated to chemical composition profiles, stoichiometry and intermixing. Here a novel analysis scheme for resonant X-ray reflectivity maps is introduced to determine such profiles, which is element specific and non-destructive, and which exhibits atomic-layer resolution and a probing depth of hundreds of nanometers.
View Article and Find Full Text PDFA combined synchrotron X-ray diffraction and transmission electron microscopy study reveals a structural phase transition controlled by the overall thickness of epitaxial nickelate-aluminate superlattices. The transition between uniform and twin-domain states is confined to the nickelate layers and leaves the aluminate layers unaffected.
View Article and Find Full Text PDFThe occupation of d orbitals controls the magnitude and anisotropy of the inter-atomic electron transfer in transition-metal oxides and hence exerts a key influence on their chemical bonding and physical properties. Atomic-scale modulations of the orbital occupation at surfaces and interfaces are believed to be responsible for massive variations of the magnetic and transport properties, but could not thus far be probed in a quantitative manner. Here we show that it is possible to derive quantitative, spatially resolved orbital polarization profiles from soft-X-ray reflectivity data, without resorting to model calculations.
View Article and Find Full Text PDF