Acetylcholine is released in visual cortex by axonal projections from the basal forebrain. The signals conveyed by these projections and their computational significance are still unclear. Using two-photon calcium imaging in behaving mice, we show that basal forebrain cholinergic axons in the mouse visual cortex provide a binary locomotion state signal.
View Article and Find Full Text PDFHere, we present a sample collection protocol for single-cell RNA sequencing of functionally identified neuronal populations in vivo with a virally delivered activity-dependent labeling tool (CaMPARI2). We describe steps for photoconversion in mice during the onset of computationally relevant events in a virtual reality environment, followed by removal and dissociation of the photo-labeled tissue, and separation of differentially labeled groups with fluorescence-activated cell sorting (FACS). We then detail procedures for characterizing and examining functionally relevant groups using standard bioinformatic techniques.
View Article and Find Full Text PDFA new study leveraging advances in high-field fMRI provides evidence that superficial cortical layers in humans play a crucial role in signaling prediction errors, a finding that is consistent with the predictive processing framework.
View Article and Find Full Text PDFPsychosis is characterized by a diminished ability of the brain to distinguish externally driven activity patterns from self-generated activity patterns. Antipsychotic drugs are a class of small molecules with relatively broad binding affinity for a variety of neuromodulator receptors that, in humans, can prevent or ameliorate psychosis. How these drugs influence the function of cortical circuits, and in particular their ability to distinguish between externally and self-generated activity patterns, is still largely unclear.
View Article and Find Full Text PDFPredictive processing is a computational framework that aims to explain how the brain processes sensory information by making predictions about the environment and minimizing prediction errors. It can also be used to explain some of the key symptoms of psychotic disorders such as schizophrenia. In recent years, substantial advances have been made in our understanding of the neuronal circuitry that underlies predictive processing in cortex.
View Article and Find Full Text PDFPredictive processing postulates the existence of prediction error neurons in cortex. Neurons with both negative and positive prediction error response properties have been identified in layer 2/3 of visual cortex, but whether they correspond to transcriptionally defined subpopulations is unclear. Here we used the activity-dependent, photoconvertible marker CaMPARI2 to tag neurons in layer 2/3 of mouse visual cortex during stimuli and behaviors designed to evoke prediction errors.
View Article and Find Full Text PDFPrediction errors are differences between expected and actual sensory input and are thought to be key computational signals that drive learning related plasticity. One way that prediction errors could drive learning is by activating neuromodulatory systems to gate plasticity. The catecholaminergic locus coeruleus (LC) is a major neuromodulatory system involved in neuronal plasticity in the cortex.
View Article and Find Full Text PDFDuring visual development, response properties of layer 2/3 neurons in visual cortex are shaped by experience. Both visual and visuomotor experience are necessary to co-ordinate the integration of bottom-up visual input and top-down motor-related input. Whether visual and visuomotor experience engage different plasticity mechanisms, possibly associated with the two separate input pathways, is still unclear.
View Article and Find Full Text PDFThe aim of this work is to provide a comment on a recent paper by Muzzu and Saleem (2021), which claims that visuomotor mismatch responses in mouse visual cortex can be explained by a locomotion-induced gain of visual halt responses. Our primary concern is that without directly comparing these responses with mismatch responses, the claim that one response can explain the other appears difficult to uphold, more so because previous work finds that a uniform locomotion-induced gain cannot explain mismatch responses. To support these arguments, we analyze layer 2/3 calcium imaging datasets and show that coupling between visual flow and locomotion greatly enhances mismatch responses in an experience-dependent manner compared with halts in non-coupled visual flow.
View Article and Find Full Text PDFHomeostatic regulation is essential for stable neuronal function. Several synaptic mechanisms of homeostatic plasticity have been described, but the functional properties of synapses involved in homeostasis are unknown. We used longitudinal two-photon functional imaging of dendritic spine calcium signals in visual and retrosplenial cortices of awake adult mice to quantify the sensory deprivation-induced changes in the responses of functionally identified spines.
View Article and Find Full Text PDFThe zebrafish is an important model in systems neuroscience but viral tools to dissect the structure and function of neuronal circuitry are not established. We developed methods for efficient gene transfer and retrograde tracing in adult and larval zebrafish by herpes simplex viruses (HSV1). HSV1 was combined with the Gal4/UAS system to target cell types with high spatial, temporal, and molecular specificity.
View Article and Find Full Text PDFThe experience of coupling between motor output and visual feedback is necessary for the development of visuomotor skills and shapes visuomotor integration in visual cortex. Whether these experience-dependent changes of responses in V1 depend on modifications of the local circuit or are the consequence of circuit changes outside of V1 remains unclear. Here, we probed the role of -methyl-d-aspartate (NMDA) receptor-dependent signaling, which is known to be involved in neuronal plasticity, in mouse primary visual cortex (V1) during visuomotor development.
View Article and Find Full Text PDFLearned associations between stimuli in different sensory modalities can shape the way we perceive these stimuli. However, it is not well understood how these interactions are mediated or at what level of the processing hierarchy they occur. Here we describe a neural mechanism by which an auditory input can shape visual representations of behaviorally relevant stimuli through direct interactions between auditory and visual cortices in mice.
View Article and Find Full Text PDFProcessing in cortical circuits is driven by combinations of cortical and subcortical inputs. These inputs are often conceptually categorized as bottom-up, conveying sensory information, and top-down, conveying contextual information. Using intracellular recordings in mouse primary visual cortex, we measured neuronal responses to visual input, locomotion, and visuomotor mismatches.
View Article and Find Full Text PDFThis perspective describes predictive processing as a computational framework for understanding cortical function in the context of emerging evidence, with a focus on sensory processing. We discuss how the predictive processing framework may be implemented at the level of cortical circuits and how its implementation could be falsified experimentally. Lastly, we summarize the general implications of predictive processing on cortical function in healthy and diseased states.
View Article and Find Full Text PDFMotor cortex (M1) lesions result in motor impairments, yet how M1 contributes to the control of movement remains controversial. To investigate the role of M1 in sensory guided motor coordination, we trained mice to navigate a virtual corridor using a spherical treadmill. This task required directional adjustments through spontaneous turning, while unexpected visual offset perturbations prompted induced turning.
View Article and Find Full Text PDFSynaptic scaling is a key homeostatic plasticity mechanism and is thought to be involved in the regulation of cortical activity levels. Here we investigated the spatial scale of homeostatic changes in spine size following sensory deprivation in a subset of inhibitory (layer 2/3 GAD65-positive) and excitatory (layer 5 Thy1-positive) neurons in mouse visual cortex. Using repeated in vivo two-photon imaging, we find that increases in spine size are tumor necrosis factor alpha (TNF-α) dependent and thus are likely associated with synaptic scaling.
View Article and Find Full Text PDFThe cortex is organized as a hierarchical processing structure. Feedback from higher levels of the hierarchy, known as top-down signals, have been shown to be involved in attentional and contextual modulation of sensory responses. Here we argue that top-down input to the primary visual cortex (V1) from A24b and the adjacent secondary motor cortex (M2) signals a prediction of visual flow based on motor output.
View Article and Find Full Text PDFThe emergence of sensory-guided behavior depends on sensorimotor coupling during development. How sensorimotor experience shapes neural processing is unclear. Here, we show that the coupling between motor output and visual feedback is necessary for the functional development of visual processing in layer 2/3 (L2/3) of primary visual cortex (V1) of the mouse.
View Article and Find Full Text PDFA general principle of sensory processing is that neurons adapt to sustained stimuli by reducing their response over time. Most of our knowledge on adaptation in single cells is based on experiments in anesthetized animals. How responses adapt in awake animals, when stimuli may be behaviorally relevant or not, remains unclear.
View Article and Find Full Text PDFIn primary visual cortex, a subset of neurons responds when a particular stimulus is encountered in a certain location in visual space. This activity can be modeled using a visual receptive field. In addition to visually driven activity, there are neurons in visual cortex that integrate visual and motor-related input to signal a mismatch between actual and predicted visual flow.
View Article and Find Full Text PDFIn generative models of brain function, internal representations are used to generate predictions of sensory input, yet little is known about how internal models influence sensory processing. Here we show that, with experience in a virtual environment, the activity of neurons in layer 2/3 of mouse primary visual cortex (V1) becomes increasingly informative of spatial location. We found that a subset of V1 neurons exhibited responses that were predictive of the upcoming visual stimulus in a spatially dependent manner and that the omission of an expected stimulus drove strong responses in V1.
View Article and Find Full Text PDFWhat cortical inputs are provided to motor control areas while they drive complex learned behaviors? We study this question in the nucleus interface of the nidopallium (NIf), which is required for normal birdsong production and provides the main source of auditory input to HVC, the driver of adult song. In juvenile and adult zebra finches, we find that spikes in NIf projection neurons precede vocalizations by several tens of milliseconds and are insensitive to distortions of auditory feedback. We identify a local isometry between NIf output and vocalizations: quasi-identical notes produced in different syllables are preceded by highly similar NIf spike patterns.
View Article and Find Full Text PDF