The importance of calcium (Ca2+) as a second messenger in T cell signaling is exemplified by genetic deficiencies of STIM1 and ORAI1, which abolish store-operated Ca2+ entry (SOCE) resulting in combined immunodeficiency (CID). We report five unrelated patients with de novo missense variants in ITPR3, encoding a subunit of the inositol 1,4,5-trisphosphate receptor (IP3R), which forms a Ca2+ channel in the endoplasmic reticulum (ER) membrane responsible for the release of ER Ca2+ required to trigger SOCE, and for Ca2+ transfer to other organelles. The patients presented with CID, abnormal T cell Ca2+ homeostasis, incompletely penetrant ectodermal dysplasia, and multisystem disease.
View Article and Find Full Text PDFThe success of the CD8 T cell-mediated immune response against infections and tumors depends on the formation of a long-lived memory pool, and the protection of effector cells from exhaustion. The advent of checkpoint blockade therapy has significantly improved anti-tumor therapeutic outcomes by reversing CD8 T cell exhaustion, but fails to generate effector cells with memory potential. Here, using in vivo mouse models, we show that let-7 miRNAs determine CD8 T cell fate, where maintenance of let-7 expression during early cell activation results in memory CD8 T cell formation and tumor clearance.
View Article and Find Full Text PDFThe network of thymic stromal cells provides essential niches with unique molecular cues controlling T cell development and selection. Recent single-cell RNA sequencing studies have uncovered previously unappreciated transcriptional heterogeneity among thymic epithelial cells (TEC). However, there are only very few cell markers that allow a comparable phenotypic identification of TEC.
View Article and Find Full Text PDFThe thymus medulla is a key site for immunoregulation and tolerance, and its functional specialisation is achieved through the complexity of medullary thymic epithelial cells (mTEC). While the importance of the medulla for thymus function is clear, the production and maintenance of mTEC diversity remains poorly understood. Here, using ontogenetic and inducible fate-mapping approaches, we identify mTEC-restricted progenitors as a cytokeratin19 (K19) TEC subset that emerges in the embryonic thymus.
View Article and Find Full Text PDFIn the thymus, cortical thymic epithelial cells (cTECs) and medullary thymic epithelial cells support αβT cell development from lymphoid progenitors. For cTECs, expression of a specialized gene signature that includes Cxcl12, Dll4, and Psmb11 enables the cortex to support T lineage commitment and the generation and selection of CD4+CD8+ thymocytes. Although the importance of cTECs in T cell development is well defined, mechanisms that shape the cTEC compartment and regulate its functional specialization are unclear.
View Article and Find Full Text PDFIn the thymus, cortical thymic epithelial cells (cTECs) and medullary thymic epithelial cells support αβT cell development from lymphoid progenitors. For cTECs, expression of a specialized gene signature that includes , , and enables the cortex to support T lineage commitment and the generation and selection of CD4CD8 thymocytes. Although the importance of cTECs in T cell development is well defined, mechanisms that shape the cTEC compartment and regulate its functional specialization are unclear.
View Article and Find Full Text PDFInvariant natural killer T (iNKT) cells are a group of innate-like T lymphocytes that recognize lipid antigens. They are supposed to be tissue resident and important for systemic and local immune regulation. To investigate the heterogeneity of iNKT cells, we recharacterized iNKT cells in the thymus and peripheral tissues.
View Article and Find Full Text PDFAllogeneic hematopoietic transplantation is a powerful treatment for hematologic malignancies. Posttransplant immune incompetence exposes patients to disease relapse and infections. We previously demonstrated that donor alloreactive natural killer (NK) cells ablate recipient hematopoietic targets, including leukemia.
View Article and Find Full Text PDFProgressive immune deficiency of aging is characterized by severe thymic atrophy, contracted T cell repertoire, and poor immune function. p63 is critical for the proliferative potential of embryonic and adult stem cells, as well as thymic epithelial cells (TECs). Because p63 null mice experience rapid post-natal lethality due to epidermal and limb morphogenesis defects, studies to define a role for p63 expression in TEC biology focused on embryonic thymus development and in vitro experiments.
View Article and Find Full Text PDFThymic epithelial cells (TEC) control the selection of a T cell repertoire reactive to pathogens but tolerant of self. This process is known to involve the promiscuous expression of virtually the entire protein-coding gene repertoire, but the extent to which TEC recapitulate peripheral isoforms, and the mechanisms by which they do so, remain largely unknown. We performed the first assembly-based transcriptomic census of transcript structures and splicing factor (SF) expression in mouse medullary TEC (mTEC) and 21 peripheral tissues.
View Article and Find Full Text PDFThe thymus provides the physiological microenvironment critical for the development of T lymphocytes, the cells that orchestrate the adaptive immune system to generate an antigen-specific response. A diverse population of stroma cells provides surface-bound and soluble molecules that orchestrate the intrathymic maturation and selection of developing T cells. Forming an intricate 3D architecture, thymic epithelial cells (TEC) represent the most abundant and important constituent of the thymic stroma.
View Article and Find Full Text PDFThymic T cell development and T cell receptor repertoire selection are dependent on essential molecular cues provided by thymic epithelial cells (TEC). TEC development and function are regulated by their epigenetic landscape, in which the repressive H3K27me3 epigenetic marks are catalyzed by polycomb repressive complex 2 (PRC2). Here we show that a TEC-targeted deficiency of PRC2 function results in a hypoplastic thymus with reduced ability to express antigens and select a normal repertoire of T cells.
View Article and Find Full Text PDFT cells rely for their development and function on the correct folding and turnover of proteins generated in response to a broad range of molecular cues. In the absence of the eukaryotic type II chaperonin complex, CCT, T cell activation induced changes in the proteome are compromised including the formation of nuclear actin filaments and the formation of a normal cell stress response. Consequently, thymocyte maturation and selection, and T cell homeostatic maintenance and receptor-mediated activation are severely impaired.
View Article and Find Full Text PDFSemin Immunopathol
February 2021
Successful pregnancies rely on adaptations within the mother, including marked changes within the immune system. It has long been known that the thymus, the central lymphoid organ, changes markedly during pregnancy. However, the molecular basis and importance of this process remain largely obscure.
View Article and Find Full Text PDFAgeing is characterised by cellular senescence, leading to imbalanced tissue maintenance, cell death and compromised organ function. This is first observed in the thymus, the primary lymphoid organ that generates and selects T cells. However, the molecular and cellular mechanisms underpinning these ageing processes remain unclear.
View Article and Find Full Text PDFForkhead box N1 (FOXN1) is a member of the forkhead box family of transcription factors and plays an important role in thymic epithelial cell differentiation and development. mutations in humans and mice give rise to the "nude" phenotype, which is marked by athymia. FOXN1 belongs to a subset of the FOX family that recognizes an alternative forkhead-like (FHL) consensus sequence (GACGC) that is different from the more widely recognized forkhead (FKH) sequence RYAAAYA (where R is purine, and Y is pyrimidine).
View Article and Find Full Text PDFTo induce central T-cell tolerance, medullary thymic epithelial cells (mTEC) collectively express most protein-coding genes, thereby presenting an extensive library of tissue-restricted antigens (TRAs). To resolve mTEC diversity and whether promiscuous gene expression (PGE) is stochastic or coordinated, we sequenced transcriptomes of 6,894 single mTEC, enriching for 1,795 rare cells expressing either of two TRAs, TSPAN8 or GP2. Transcriptional heterogeneity allowed partitioning of mTEC into 15 reproducible subpopulations representing distinct maturational trajectories, stages and subtypes, including novel mTEC subsets, such as chemokine-expressing and ciliated TEC, which warrant further characterisation.
View Article and Find Full Text PDFThe contributions of the peripheral adaptive and innate immune systems to CNS autoimmunity have been extensively studied. However, the role of thymic selection in these conditions is much less well understood. The thymus is the primary lymphoid organ for the generation of T cells; thymic mechanisms ensure that cells with an overt autoreactive specificity are eliminated before they emigrate to the periphery and control the generation of thymic regulatory T cells.
View Article and Find Full Text PDF